Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 47836 by Aknabob1 last updated on 15/Nov/18

prove cosec^2 θ−cotθcosecθ=1

provecosec2θcotθcosecθ=1

Answered by $@ty@m last updated on 15/Nov/18

LHS=cosec^2 θ−cotθcosecθ  =cosec^2 θ−((cos θ)/(sin θ))×(1/(sin θ))  =(1/(sin^2 θ))−((cos θ)/(sin^2 θ))  =((1−cos θ)/(sin^2 θ))  =((1−cos θ)/(1−cos^2 θ))  =(1/(1+cos θ))  ≠1  The question is wrong.  May be typo error.  Pl. check

LHS=cosec2θcotθcosecθ=cosec2θcosθsinθ×1sinθ=1sin2θcosθsin2θ=1cosθsin2θ=1cosθ1cos2θ=11+cosθ1Thequestioniswrong.Maybetypoerror.Pl.check

Commented by Aknabob1 last updated on 15/Nov/18

thanks i appreciate

thanksiappreciate

Answered by peter frank last updated on 15/Nov/18

cosecθ(cosecθ−cotθ)  cosecθ((1/(sinθ))−((cosθ)/(sinθ)))  ((cosecθ)/(sinθ))(1−cosθ)  ((1−cosθ)/(sin^2 θ))=((1−cosθ)/(1−cos^2 θ))                =((1−cosθ)/(1+cosθ))  hence  cosec^2 θ−cotθcosecθ≠1

cosecθ(cosecθcotθ)cosecθ(1sinθcosθsinθ)cosecθsinθ(1cosθ)1cosθsin2θ=1cosθ1cos2θ=1cosθ1+cosθhencecosec2θcotθcosecθ1

Commented by Aknabob1 last updated on 15/Nov/18

thanks i appreciate

thanksiappreciate

Terms of Service

Privacy Policy

Contact: info@tinkutara.com