Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 47850 by maxmathsup by imad last updated on 15/Nov/18

calculate A_p =∫_0 ^1  ((x^p −1)/(ln(x)))dx with p>0.

$${calculate}\:{A}_{{p}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{{p}} −\mathrm{1}}{{ln}\left({x}\right)}{dx}\:{with}\:{p}>\mathrm{0}. \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 16/Nov/18

i have tried following way  A_p =∫_0 ^1 ((x^p −1)/(lnx))dx  (dA_p /dp)=∫_0 ^1 (∂/∂p)(((x^p −1)/(lnx)))dx  =∫_0 ^1 ((x^p lnx)/(lnx))dx  =∫_0 ^1 x^p dx  =∣(x^(p+1) /(p+1))∣_0 ^1 =(1/(p+1))  dA_p =(dp/(p+1))  ∫dA_p =∫(dp/(p+1))  A_p =ln(p+1)+c  now in question p>0  so here i stopped further...  but if p=0 assumed  then ∫_0 ^1 ((x^p −1)/(lnx))dx  ∫_0 ^1 ((x^0 −1)/(lnx))dx=0=A_(p=0)   then   A_p =ln(p+1)+c  A_(p=0) =ln(0+1)+c  0=0+c  c=0  A_p =ln(p+1)  so A_p =∫_0 ^1 ((x^p −1)/(lnx))dx=ln(p+1)  pls check sir...

$${i}\:{have}\:{tried}\:{following}\:{way} \\ $$ $${A}_{{p}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{p}} −\mathrm{1}}{{lnx}}{dx} \\ $$ $$\frac{{dA}_{{p}} }{{dp}}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\partial}{\partial{p}}\left(\frac{{x}^{{p}} −\mathrm{1}}{{lnx}}\right){dx} \\ $$ $$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{p}} {lnx}}{{lnx}}{dx} \\ $$ $$=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{p}} {dx} \\ $$ $$=\mid\frac{{x}^{{p}+\mathrm{1}} }{{p}+\mathrm{1}}\mid_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{1}}{{p}+\mathrm{1}} \\ $$ $${dA}_{{p}} =\frac{{dp}}{{p}+\mathrm{1}} \\ $$ $$\int{dA}_{{p}} =\int\frac{{dp}}{{p}+\mathrm{1}} \\ $$ $${A}_{{p}} ={ln}\left({p}+\mathrm{1}\right)+{c} \\ $$ $${now}\:{in}\:{question}\:{p}>\mathrm{0} \\ $$ $${so}\:{here}\:{i}\:{stopped}\:{further}... \\ $$ $${but}\:{if}\:{p}=\mathrm{0}\:{assumed} \\ $$ $${then}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{p}} −\mathrm{1}}{{lnx}}{dx} \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{0}} −\mathrm{1}}{{lnx}}{dx}=\mathrm{0}={A}_{{p}=\mathrm{0}} \\ $$ $${then}\: \\ $$ $${A}_{{p}} ={ln}\left({p}+\mathrm{1}\right)+{c} \\ $$ $${A}_{{p}=\mathrm{0}} ={ln}\left(\mathrm{0}+\mathrm{1}\right)+{c} \\ $$ $$\mathrm{0}=\mathrm{0}+{c} \\ $$ $${c}=\mathrm{0} \\ $$ $${A}_{{p}} ={ln}\left({p}+\mathrm{1}\right) \\ $$ $${so}\:{A}_{{p}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{p}} −\mathrm{1}}{{lnx}}{dx}={ln}\left({p}+\mathrm{1}\right) \\ $$ $${pls}\:{check}\:{sir}... \\ $$ $$ \\ $$

Commented bymaxmathsup by imad last updated on 17/Nov/18

changement ln(x)=−t give A_p =−∫_0 ^∞   ((e^(−pt)  −1)/(−t)) (−e^(−t) )dt  =−∫_0 ^∞   ((e^(−(p+1)t)  −e^(−t) )/t) dt =∫_0 ^∞  ((e^(−t)  −e^(−(p+1)t) )/t)dt let   f(p) =∫_0 ^∞   ((e^(−t)  −e^(−(p+1)t) )/t) dt ⇒f^′ (p) = ∫_0 ^∞  (∂/∂p)(((e^(−t)  −e^(−t)  e^(−pt) )/t))dt  =∫_0 ^∞  ((−e^(−t) (−t)e^(−pt) )/t)dt = ∫_0 ^∞  e^(−(p+1)t) dt =[−(1/(p+1)) e^(−(p+1)t) ]_(t=0) ^∞   =(1/(p+1)) ⇒f(p) =ln(p+1) +λ   but λ =lim_(x→0) (f(p)−ln(p+1))=0 ⇒  A_p =f(p) =ln(p+1)  ★ ∫_0 ^1  ((x^p −1)/(ln(x)))dx=ln(p+1) ★ with p>0.

$${changement}\:{ln}\left({x}\right)=−{t}\:{give}\:{A}_{{p}} =−\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{pt}} \:−\mathrm{1}}{−{t}}\:\left(−{e}^{−{t}} \right){dt} \\ $$ $$=−\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\left({p}+\mathrm{1}\right){t}} \:−{e}^{−{t}} }{{t}}\:{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{t}} \:−{e}^{−\left({p}+\mathrm{1}\right){t}} }{{t}}{dt}\:{let}\: \\ $$ $${f}\left({p}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}} \:−{e}^{−\left({p}+\mathrm{1}\right){t}} }{{t}}\:{dt}\:\Rightarrow{f}^{'} \left({p}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\frac{\partial}{\partial{p}}\left(\frac{{e}^{−{t}} \:−{e}^{−{t}} \:{e}^{−{pt}} }{{t}}\right){dt} \\ $$ $$=\int_{\mathrm{0}} ^{\infty} \:\frac{−{e}^{−{t}} \left(−{t}\right){e}^{−{pt}} }{{t}}{dt}\:=\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left({p}+\mathrm{1}\right){t}} {dt}\:=\left[−\frac{\mathrm{1}}{{p}+\mathrm{1}}\:{e}^{−\left({p}+\mathrm{1}\right){t}} \right]_{{t}=\mathrm{0}} ^{\infty} \\ $$ $$=\frac{\mathrm{1}}{{p}+\mathrm{1}}\:\Rightarrow{f}\left({p}\right)\:={ln}\left({p}+\mathrm{1}\right)\:+\lambda\:\:\:{but}\:\lambda\:={lim}_{{x}\rightarrow\mathrm{0}} \left({f}\left({p}\right)−{ln}\left({p}+\mathrm{1}\right)\right)=\mathrm{0}\:\Rightarrow \\ $$ $${A}_{{p}} ={f}\left({p}\right)\:={ln}\left({p}+\mathrm{1}\right) \\ $$ $$\bigstar\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{{p}} −\mathrm{1}}{{ln}\left({x}\right)}{dx}={ln}\left({p}+\mathrm{1}\right)\:\bigstar\:{with}\:{p}>\mathrm{0}. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 16/Nov/18

we know  ∫_0 ^1 x^k dx=∣(x^(k+1) /(k+1))∣_0 ^1 =(1/(k+1))  now intregate both side w.r.t k in the interval  say q to p  ∫_q ^p dk[∫_0 ^1 x^k dx]=∫_q ^p (dk/(1+k))  taking help from advanced level intregation  ∫_0 ^1 dx∫_q ^p x^k dk=∣ln(1+k)∣_q ^p   ∫_0 ^1 dx[∣(x^k /(lnx))∣_q ^p ]=ln(((1+p)/(1+q)))  ∫_0 ^1 ((x^p −x^q )/(lnx))dx=ln(((1+p)/(1+q)))=ln(1+p)−ln(1+q)  now put q=0 both side  ∫_0 ^1 ((x^p −1)/(lnx))dx=ln(1+p) ans

$${we}\:{know} \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{k}} {dx}=\mid\frac{{x}^{{k}+\mathrm{1}} }{{k}+\mathrm{1}}\mid_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{1}}{{k}+\mathrm{1}} \\ $$ $${now}\:{intregate}\:{both}\:{side}\:{w}.{r}.{t}\:{k}\:{in}\:{the}\:{interval} \\ $$ $${say}\:{q}\:{to}\:{p} \\ $$ $$\int_{{q}} ^{{p}} {dk}\left[\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{k}} {dx}\right]=\int_{{q}} ^{{p}} \frac{{dk}}{\mathrm{1}+{k}} \\ $$ $${taking}\:{help}\:{from}\:{advanced}\:{level}\:{intregation} \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{1}} {dx}\int_{{q}} ^{{p}} {x}^{{k}} {dk}=\mid{ln}\left(\mathrm{1}+{k}\right)\mid_{{q}} ^{{p}} \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{1}} {dx}\left[\mid\frac{{x}^{{k}} }{{lnx}}\mid_{{q}} ^{{p}} \right]={ln}\left(\frac{\mathrm{1}+{p}}{\mathrm{1}+{q}}\right) \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{p}} −{x}^{{q}} }{{lnx}}{dx}={ln}\left(\frac{\mathrm{1}+{p}}{\mathrm{1}+{q}}\right)={ln}\left(\mathrm{1}+{p}\right)−{ln}\left(\mathrm{1}+{q}\right) \\ $$ $${now}\:{put}\:{q}=\mathrm{0}\:{both}\:{side} \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{p}} −\mathrm{1}}{{lnx}}{dx}={ln}\left(\mathrm{1}+{p}\right)\:{ans} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com