Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 47851 by maxmathsup by imad last updated on 15/Nov/18

let  f(x)=x+1+(√x) and g(x)=x+1−(√x)  find ∫ ((f(x))/(g(x)))dx  and  ((∫f(x)dx)/(∫g(x)dx)) .

letf(x)=x+1+xandg(x)=x+1xfindf(x)g(x)dxandf(x)dxg(x)dx.

Commented by maxmathsup by imad last updated on 16/Nov/18

let I =∫ ((f(x))/(g(x)))dx ⇒I =∫((x+1+(√x))/(x+1−(√x)))dx cha7gement (√x)=t give  I =∫ ((t^2 +t+1)/(t^2 −t +1)) (2t)dt =2 ∫    ((t^3  +t^2  +1)/(t^2  −t +1))dt  =2 ∫ ((t(t^2 −t+1)+t^2 −t+t^2  +1)/(t^2 −t +1))dt =2 ∫ t dt +2 ∫ ((2t^2 −t+1)/(t^2 −t +1))dt  =t^2  +2 ∫  ((2(t^2 −t+1)+2t−2−t+1)/(t^2 −t+1))dt  =t^2  +4t  + ∫ ((2t−1−1)/(t^2 −t +1))dt =t^2  +4t +ln∣t^2 −t+1∣−∫ (dt/(t^2 −t +1)) but  ∫  (dt/(t^2 −t +1)) =∫  (dt/(t^2 −2(t/2) +(1/(4 )) +(3/4))) =∫  (dt/((t−(1/2))^2  +(3/4)))  =_(t−(1/2)=((√3)/2)u )    (4/3) ∫  (1/(1+u^2 )) ((√3)/2)du =(2/(√3)) arctan(((2t−1)/(√3))) ⇒  I =t^2  +4t −(2/(√3)) arctan(((2t−1)/(√3)))+C .

letI=f(x)g(x)dxI=x+1+xx+1xdxcha7gementx=tgiveI=t2+t+1t2t+1(2t)dt=2t3+t2+1t2t+1dt=2t(t2t+1)+t2t+t2+1t2t+1dt=2tdt+22t2t+1t2t+1dt=t2+22(t2t+1)+2t2t+1t2t+1dt=t2+4t+2t11t2t+1dt=t2+4t+lnt2t+1dtt2t+1butdtt2t+1=dtt22t2+14+34=dt(t12)2+34=t12=32u4311+u232du=23arctan(2t13)I=t2+4t23arctan(2t13)+C.

Commented by maxmathsup by imad last updated on 16/Nov/18

but t=(√x) ⇒ I =x +4(√x) −(2/(√3)) arctan(((2(√x)−1)/(√3))) +C .

butt=xI=x+4x23arctan(2x13)+C.

Commented by maxmathsup by imad last updated on 18/Nov/18

changement (√x)=t give ∫ f(x)dx=∫ (t^2  +1+t)(2t)dt  =2 ∫ (t^3  +t^2  +t)dt =(1/2)t^4  +(2/3)t^3   +t^2  +c_1 =(x^2 /2) +(2/3)x(√x)+x +c_1   ∫ g(x)dx =∫ (x+1−(√x))dx =_((√x)=t)    ∫ (t^2  +1−t)(2t)dt  =2 ∫  (t^3  +t −t^2 )dt =(t^4 /4) −(2/3)t^3  +t^2  +c_2 =(x^2 /2) −(2/3)x(√x)+x +c_2   ⇒ ((∫f(x)dx)/(∫g(x)dx)) =(((x^2 /2) +(2/3)x(√x)+x +c_1 )/((x^2 /2)−(2/3)x(√x)+x +c_2 )) .

changementx=tgivef(x)dx=(t2+1+t)(2t)dt=2(t3+t2+t)dt=12t4+23t3+t2+c1=x22+23xx+x+c1g(x)dx=(x+1x)dx=x=t(t2+1t)(2t)dt=2(t3+tt2)dt=t4423t3+t2+c2=x2223xx+x+c2f(x)dxg(x)dx=x22+23xx+x+c1x2223xx+x+c2.

Answered by tanmay.chaudhury50@gmail.com last updated on 16/Nov/18

∫f(x)dx  ∫x+1+(√x) dx  =(x^2 /2)+x+(x^(3/2) /(3/2))+c_1   ∫g(x)dx=(x^2 /2)+x−(x^(3/2) /(3/2))+c_2   so ((∫f(x)dx)/(∫g(x)dx))=(((x^2 /2)+x+(x^(3/2) /(3/2))+c_1 )/((x^2 /2)+x−(x^(3/2) /(3/2))+c_2 ))

f(x)dxx+1+xdx=x22+x+x3232+c1g(x)dx=x22+xx3232+c2sof(x)dxg(x)dx=x22+x+x3232+c1x22+xx3232+c2

Answered by tanmay.chaudhury50@gmail.com last updated on 16/Nov/18

∫((x+1+(√x) )/(x+1−(√x) ))dx  ∫(((√x) +(1/(√x))+1)/((√x) +(1/(√x))−1))dx  ∫(((√x) +(1/((√x) ))−1+2)/((√x) +(1/((√x) ))−1))dx  ∫dx+2∫(dx/((√x)+(1/(√x))−1))  t^2 =x   dx=2tdt  I_1 =∫dx=x+c_1   I_2 =∫((2tdt)/(t+(1/t)−1))dt  ∫((2t^2 )/(t^2 +1−t))dt  2∫((t^2 −t+1+t−1)/(t^2 −t+1))dt  2∫dt+2∫((t−1)/(t^2 −t+1))dt  2∫dt+∫((2t−1−1)/(t^2 −t+1))dt  2∫dt+∫((d(t^2 −t+1))/(t^2 −t+1))−∫(dt/((t^2 −2.t.(1/2)+(1/4)+(3/4))))  2∫dt+∫((d(t^2 −t+1))/(t^2 −t+1))−∫(dt/((t−(1/2))^2 +(((√3)/2))^2 ))  2t−ln(t^2 −t+1)−(2/(((√3) )/2))tan^(−1) (((t−(1/2))/(((√3) )/2)))+c  2(√x) −ln(x−(√x) +1)−(4/((√3) ))tan^(−1) ((((√x) −(1/2))/(((√3) )/2)))+c

x+1+xx+1xdxx+1x+1x+1x1dxx+1x1+2x+1x1dxdx+2dxx+1x1t2=xdx=2tdtI1=dx=x+c1I2=2tdtt+1t1dt2t2t2+1tdt2t2t+1+t1t2t+1dt2dt+2t1t2t+1dt2dt+2t11t2t+1dt2dt+d(t2t+1)t2t+1dt(t22.t.12+14+34)2dt+d(t2t+1)t2t+1dt(t12)2+(32)22tln(t2t+1)232tan1(t1232)+c2xln(xx+1)43tan1(x1232)+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com