Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 47857 by maxmathsup by imad last updated on 15/Nov/18

let A_n =Σ_(k=0) ^(n−1)  sin(((kπ)/(2n))) and B_n =Σ_(k=0) ^(n−1)  cos(((kπ)/(2n)))  1) find A_n  and B_n  interms of n  2)calculate lim_(n→+∞)   (A_n /B_n )  3)calculate ((lim_(n→+∞) A_n )/(lim_(n→+∞  ) B_n )) .

letAn=k=0n1sin(kπ2n)andBn=k=0n1cos(kπ2n)1)findAnandBnintermsofn2)calculatelimn+AnBn3)calculatelimn+Anlimn+Bn.

Commented by maxmathsup by imad last updated on 17/Nov/18

we have B_n +iA_n =Σ_(k=0) ^(n−1)  e^(i((kπ)/(2n)))  =Σ_(k=0) ^(n−1)  (e^(i(π/(2n))) )^k  = ((1−e^((iπ)/2) )/(1−e^((iπ)/(2n)) ))  =((1−i)/(1−cos((π/(2n)))−isin((π/(2n))))) =((1−i)/(2sin^2 ((π/(4n)))−2isin((π/(4n)))cos((π/(4n)))))  =((1−i)/(−2i sin((π/(4n)))(cos((π/(4n)))+i sin((π/(4n))))))  =((i+1)/(2sin((π/(4n))))) e^(−((iπ)/(4n)))  =((1+i)/(2sin((π/(4n))))){cos((π/(4n)))−i sin((π/(4n)))}  =((cos((π/(4n)))−i sin((π/(4n))) +i cos((π/(4n))) +sin((π/(4n))))/(2sin((π/(4n))))) ⇒  B_n =((cos((π/(4n)))+sin((π/(4n))))/(2sin((π/(4n))))) =(1/(2tan((π/(4n))))) +(1/2)  A_n =((cos((π/(4n)))−sin((π/(4n))))/(2sin((π/(4n))))) = (1/(2 tan((π/(4n))))) −(1/2)  2) we have (A_n /B_n ) =((cos((π/(4n)))−sin((π/(4n))))/(cos((π/(4n)))+sin((π/(4n))))) ∼((1−(π^2 /(32n^2 ))−(π/(4n)))/(1−(π^2 /(32n^2 ))+(π/(4n)))) →1 (n→+∞) ⇒  lim_(n→+∞)    (A_n /B_n ) =1 .

wehaveBn+iAn=k=0n1eikπ2n=k=0n1(eiπ2n)k=1eiπ21eiπ2n=1i1cos(π2n)isin(π2n)=1i2sin2(π4n)2isin(π4n)cos(π4n)=1i2isin(π4n)(cos(π4n)+isin(π4n))=i+12sin(π4n)eiπ4n=1+i2sin(π4n){cos(π4n)isin(π4n)}=cos(π4n)isin(π4n)+icos(π4n)+sin(π4n)2sin(π4n)Bn=cos(π4n)+sin(π4n)2sin(π4n)=12tan(π4n)+12An=cos(π4n)sin(π4n)2sin(π4n)=12tan(π4n)122)wehaveAnBn=cos(π4n)sin(π4n)cos(π4n)+sin(π4n)1π232n2π4n1π232n2+π4n1(n+)limn+AnBn=1.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com