All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 47857 by maxmathsup by imad last updated on 15/Nov/18
letAn=∑k=0n−1sin(kπ2n)andBn=∑k=0n−1cos(kπ2n)1)findAnandBnintermsofn2)calculatelimn→+∞AnBn3)calculatelimn→+∞Anlimn→+∞Bn.
Commented by maxmathsup by imad last updated on 17/Nov/18
wehaveBn+iAn=∑k=0n−1eikπ2n=∑k=0n−1(eiπ2n)k=1−eiπ21−eiπ2n=1−i1−cos(π2n)−isin(π2n)=1−i2sin2(π4n)−2isin(π4n)cos(π4n)=1−i−2isin(π4n)(cos(π4n)+isin(π4n))=i+12sin(π4n)e−iπ4n=1+i2sin(π4n){cos(π4n)−isin(π4n)}=cos(π4n)−isin(π4n)+icos(π4n)+sin(π4n)2sin(π4n)⇒Bn=cos(π4n)+sin(π4n)2sin(π4n)=12tan(π4n)+12An=cos(π4n)−sin(π4n)2sin(π4n)=12tan(π4n)−122)wehaveAnBn=cos(π4n)−sin(π4n)cos(π4n)+sin(π4n)∼1−π232n2−π4n1−π232n2+π4n→1(n→+∞)⇒limn→+∞AnBn=1.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com