Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 47883 by behi83417@gmail.com last updated on 16/Nov/18

Commented by behi83417@gmail.com last updated on 16/Nov/18

∡A=90^• ,colored shapes such:ACHG,  are squares and points:L,...are  square centers.  1.show that: AF is the angular   bisector of ∡BAC.  2.is statement#1 true for BL and CK?  3.show that,FK^△ L is isoscale when  AB^△ C is isoscale.  4.area of FK^△ L in terms of :a,b,c.  (a,b,c: sides of AB^△ C).

A=90,coloredshapessuch:ACHG,aresquaresandpoints:L,...aresquarecenters.1.showthat:AFistheangularbisectorofBAC.You can't use 'macro parameter character #' in math mode3.showthat,FKLisisoscalewhenABCisisoscale.4.areaofFKLintermsof:a,b,c.(a,b,c:sidesofABC).

Answered by behi83417@gmail.com last updated on 16/Nov/18

#1.  a circle passing from:A,B,C,also  passes from F.because of:  ∡BAC=∡BFC=90^• .BF=FC=(a/(√2))  so BF^(arc) =F^(arc) C⇒BA^� F=CA^� F.so  AF,is bisector of BA^� C.  or another way:  FA=x  cosFA^� B=((FA^2 +AB^2 −FB^2 )/(2FA.AB))=  =((x^2 +c^2 −((a/(√2)))^2 )/(2xc))=((2x^2 +2c^2 −b^2 −c^2 )/(4xc))=  =((2x^2 +c^2 −b^2 )/(4xc))  (i)  cosFA^� C=((FA^2 +AC^2 −FC^2 )/(2FA.AC))=  =((x^2 +b^2 −((a/(√2)))^2 )/(2xb))=((2x^2 +b^2 −c^2 )/(4xb)) (ii)  (i)−(ii)=((b(2x^2 +c^2 −b^2 )−c(2x^2 +b^2 −c^2 ))/(4xbc))=  =((2x^2 (b−c)−(b^3 −c^3 −bc^2 +cb^2 ))/(4xbc))=  =(((b−c)(2x^2 −(b^2 +c^2 +bc)−bc))/(4xbc))=  =(((b−c)(2x^2 −(b+c)^2 ))/(4xbc))=0  ⇒∡FAB=∡FAC⇒AF,is bisector.  [ABCF,is cyclic.so:  x.a=(a/(√2)).b+(a/(√2)).c⇒x=((b+c)/(√2))]  #2.  the answer is :no.  S_(FK^△ L) =(1/2)FA.KL=(1/2).((b+c)/(√2)).((b+c)/(√2))=(((b+c)^2 )/4) .

You can't use 'macro parameter character #' in math modeacirclepassingfrom:A,B,C,alsopassesfromF.becauseof:BAC=BFC=90.BF=FC=a2soBFarc=FCarcBAF=CAF.soAF,isbisectorofBAC.oranotherway:FA=xcosFAB=FA2+AB2FB22FA.AB==x2+c2(a2)22xc=2x2+2c2b2c24xc==2x2+c2b24xc(i)cosFAC=FA2+AC2FC22FA.AC==x2+b2(a2)22xb=2x2+b2c24xb(ii)(i)(ii)=b(2x2+c2b2)c(2x2+b2c2)4xbc==2x2(bc)(b3c3bc2+cb2)4xbc==(bc)(2x2(b2+c2+bc)bc)4xbc==(bc)(2x2(b+c)2)4xbc=0FAB=FACAF,isbisector.[ABCF,iscyclic.so:x.a=a2.b+a2.cx=b+c2]You can't use 'macro parameter character #' in math modetheansweris:no.SFKL=12FA.KL=12.b+c2.b+c2=(b+c)24.

Answered by behi83417@gmail.com last updated on 16/Nov/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com