Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 47960 by Meritguide1234 last updated on 17/Nov/18

Answered by ajfour last updated on 17/Nov/18

L=lim_(n→∞) (1/n)Σ_(i=1) ^n Σ_(j=1) ^n  ((i+j)/(i^2 +j^2 ))    = lim_(n→∞) (1/n)Σ_(i=1) ^n (lim_(n→0)  (1/n)Σ_(j=1) ^n (((i/n)+(j/n))/((i^2 /n^2 )+(j^2 /n^2 ))))  Let  (i/n) = a    =  lim_(n→∞) (1/n)Σ_(i=1) ^n  ∫_0 ^(  1) ((a+x)/(a^2 +x^2 )) dx    =  lim_(n→∞) (1/n)Σ_(i=1) ^n [∫_0 ^(  1) (a/(a^2 +x^2 )) dx+                                 (1/2)∫_0 ^(  1) ((2xdx)/(a^2 +x^2 ))  ]    = lim_(n→∞) (1/n)Σ_(i=1) ^n [tan^(−1) (x/a)∣_0 ^1                                 +(1/2)ln ∣a^2 +x^2 ∣_0 ^1   ]     =  lim_(n→∞) (1/n)Σ_(i=1) ^n (tan^(−1) (1/a)+(1/2)ln ∣1+(1/a^2 )∣)    = ∫_0 ^(  1) [tan^(−1) (1/x)+(1/2)ln (1+(1/x^2 ))]dx    = [xtan^(−1) (1/x)+(1/2)ln (1+(1/x^2 ))]_0 ^1        −∫_0 ^(  1) ((1/(1+(1/x^2 ))))(((−1)/x^2 ))xdx     −(1/2)∫_0 ^(  1) ((1/(1+(1/x^2 ))))(((−2)/x^3 ))xdx   = (π/4)+((ln 2)/2)+(1/2)∫_0 ^(  1)  ((2xdx)/(x^2 +1))+∫_0 ^(  1) (dx/(1+x^2 ))   L = (π/4)+((ln 2)/2)+((ln 2)/2)+(π/4) .

L=limn1nni=1nj=1i+ji2+j2=limn1nni=1(limn01nnj=1in+jni2n2+j2n2)Letin=a=limn1nni=101a+xa2+x2dx=limn1nni=1[01aa2+x2dx+12012xdxa2+x2]=limn1nni=1[tan1xa01+12lna2+x201]=limn1nni=1(tan11a+12ln1+1a2)=01[tan11x+12ln(1+1x2)]dx=[xtan11x+12ln(1+1x2)]0101(11+1x2)(1x2)xdx1201(11+1x2)(2x3)xdx=π4+ln22+12012xdxx2+1+01dx1+x2L=π4+ln22+ln22+π4.

Commented by Meritguide1234 last updated on 17/Nov/18

beautiful solution

beautifulsolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com