All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 47960 by Meritguide1234 last updated on 17/Nov/18
Answered by ajfour last updated on 17/Nov/18
L=limn→∞1n∑ni=1∑nj=1i+ji2+j2=limn→∞1n∑ni=1(limn→01n∑nj=1in+jni2n2+j2n2)Letin=a=limn→∞1n∑ni=1∫01a+xa2+x2dx=limn→∞1n∑ni=1[∫01aa2+x2dx+12∫012xdxa2+x2]=limn→∞1n∑ni=1[tan−1xa∣01+12ln∣a2+x2∣01]=limn→∞1n∑ni=1(tan−11a+12ln∣1+1a2∣)=∫01[tan−11x+12ln(1+1x2)]dx=[xtan−11x+12ln(1+1x2)]01−∫01(11+1x2)(−1x2)xdx−12∫01(11+1x2)(−2x3)xdx=π4+ln22+12∫012xdxx2+1+∫01dx1+x2L=π4+ln22+ln22+π4.
Commented by Meritguide1234 last updated on 17/Nov/18
beautifulsolution
Terms of Service
Privacy Policy
Contact: info@tinkutara.com