Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 47985 by maxmathsup by imad last updated on 17/Nov/18

calculate I=∫_0 ^1 (√(1+2(√(x−x^2 ))))dx  and J =∫_0 ^1 (√(1−2(√(x−x^2 ))))dx

calculateI=011+2xx2dxandJ=0112xx2dx

Commented by MJS last updated on 18/Nov/18

I=(4/3)  J=(4/3)−((2(√2))/3)  I will post my work later

I=43J=43223Iwillpostmyworklater

Commented by maxmathsup by imad last updated on 18/Nov/18

also we have J =∫_0 ^1 ∣(√x)−(√(1−x))∣dx   but x−(1−x)=2x−1 so  if  2x−1≥0 ⇒(1/(2 ))≤x≤1 we get ∣(√x)−(√(1−x))∣=(√x)−(√(1−x)) ⇒  ∣(√x)−(√(1−x))∣=(√x)−(√(1−x))  if 2x−1≤0 ⇒0≤x≤(1/2) ⇒∣(√x)−(√(1−x))∣=(√(1−x)) −(√x) ⇒  J =∫_0 ^(1/2) ((√(1−x))−(√x))dx +∫_(1/2) ^1 ((√x)−(√(1−x)))dx  ∫_0 ^(1/2) ((√(1−x))−(√x))dx=[−(2/3)(1−x)^(3/2)  −(2/3) x^(3/2) ]_0 ^(1/2) =(2/3) −(2/3)((1/2))^(3/2)  −(2/3)((1/2))^(3/2)   =(2/3) −(4/3) (1/2^(3/2) ) =(2/3) −(2^(2−(3/2)) /3) =(2/3) −((√2)/3)  ∫_(1/2) ^1 ((√x)−(√(1−x)))dx =[(2/3)x^(3/2)  +(2/3)(1−x)^(3/2) ]_(1/2) ^1  =(2/3) −(2/3)((1/2))^(3/2) −(2/3)((1/2))^(3/2)   =(2/3) −(4/3)((1/2))^(3/2)  =(2/3) −((√2)/3) ⇒ J=2((2/3) −((√2)/3))=(4/3) −((2(√2))/3) .

alsowehaveJ=01x1xdxbutx(1x)=2x1soif2x1012x1wegetx1x∣=x1xx1x∣=x1xif2x100x12⇒∣x1x∣=1xxJ=012(1xx)dx+121(x1x)dx012(1xx)dx=[23(1x)3223x32]012=2323(12)3223(12)32=23431232=2322323=2323121(x1x)dx=[23x32+23(1x)32]121=2323(12)3223(12)32=2343(12)32=2323J=2(2323)=43223.

Commented by maxmathsup by imad last updated on 18/Nov/18

we have first  1+2(√(x−x^2 ))=1+2(√x)(√(1−x))=x +1−x+2(√x)(√(1−x))  =((√x)+(√(1−x)))^2  ⇒(√(1+2(√(x−x^2 ))))=∣(√x)+(√(1−x))∣ but x∈[0,1] ⇒∣(√(x+(√(1−x))))∣=  (√x)+(√(1−x)) ⇒I =∫_0 ^1 ((√x)+(√(1−x)))dx =∫_0 ^1 (√x)dx +∫_0 ^1 (√(1−x))dx  =[(2/3)x^(3/2) ]_0 ^1   +[−(2/3)(1−x)^(3/2) ]_0 ^1 =(2/3) +(2/3) =(4/3)

wehavefirst1+2xx2=1+2x1x=x+1x+2x1x=(x+1x)21+2xx2=∣x+1xbutx[0,1]⇒∣x+1x∣=x+1xI=01(x+1x)dx=01xdx+011xdx=[23x32]01+[23(1x)32]01=23+23=43

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Nov/18

1+2(√(x−x^2 ))   1+2(√(x(1−x)))   x+1−x+2(√(x(1−x)))   {(√x) +(√(1−x)) }^2   I=∫_0 ^1 (√x) +(√(1−x)) dx  now   =∣(x^(3/2) /(3/2))∣_0 ^1 −(2/3)∣(1−x)^(3/2) ∣_0 ^1 =(2/3)+(2/3)=(4/3)  J=    ∫_0 ^(0.5) (√(1−2(√(x(1−x))))) dx+∫_(0.5) ^1 (√(1−2(√(x(1−x))))) dx  ∫_0 ^(0.5) (√(1−x)) −(√x) dx+∫_(0.5) ^1 (√x) −(√(1−x)) dx  from0.5 >x>0   value of (√(1−x)) >value of (√x)   and from 1>x>0.5  valud of (√x) >(√(1−x))   so    =∣{−(2/3)(1−x)^(3/2) −(2/3)(x)^(3/2) }∣_0 ^(0.5) +∣{(2/3)(x)^(3/2) +(2/3)(1−x)^(3/2) }∣_(0.5) ^1   =(−(2/3)){(0.5)^(3/2) +(0.5)^(3/2) −(1)^(3/2) −0}+(2/3){1+0−(0.5)^(3/2) −(0.5)^(3/2) }  =(((−4)/3))(0.5)^(3/2) +(2/3)+(2/3)−((4/3))(0.5)^(3/2)   =(4/3)−(8/3)×(0.5)^(3/2) =(4/3)−(8/3)×(1/(2(√2)))=(4/3)−(4/3)×(1/((√2) ))

1+2xx21+2x(1x)x+1x+2x(1x){x+1x}2I=01x+1xdxnow=∣x32320123(1x)3201=23+23=43J=00.512x(1x)dx+0.5112x(1x)dx00.51xxdx+0.51x1xdxfrom0.5>x>0valueof1x>valueofxandfrom1>x>0.5valudofx>1xso=∣{23(1x)3223(x)32}00.5+{23(x)32+23(1x)32}0.51=(23){(0.5)32+(0.5)32(1)320}+23{1+0(0.5)32(0.5)32}=(43)(0.5)32+23+23(43)(0.5)32=4383×(0.5)32=4383×122=4343×12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com