Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 47986 by behi83417@gmail.com last updated on 17/Nov/18

Commented by maxmathsup by imad last updated on 18/Nov/18

2) (e) ⇔ ((1−x^8 )/(1−x)) =0  ⇔ x^8 =1   and x≠1   x=r e^(iθ)  ⇒r^8  e^(i8θ) =e^(i2kπ)  ⇒  r=1and 8θ=2kπ ⇒ x_k =e^(i((kπ)/4))    with k ∈[[1,7]] are the roots of this equation.

2)(e)1x81x=0x8=1andx1x=reiθr8ei8θ=ei2kπr=1and8θ=2kπxk=eikπ4withk[[1,7]]aretherootsofthisequation.

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Nov/18

1)x^4 +x^3 +x^2 +x+1=0  x^2 +x+1+(1/x)+(1/x^2 )=0  (x^2 +(1/x^2 ))+(x+(1/x))+1=0  y=x+(1/x)  y^2 −2+y+1=0  y^2 +y−1=0  y=((−1±(√(1+4)))/2)=((−1±(√5))/2)=((−1+(√5))/2) and ((−1−(√5))/2)  so x+(1/x)=y_1     and x+(1/x)=y_2       y_1 =((−1+(√5))/2)  and y_2 =((−1−(√5))/2)  x+(1/x)=y_1   x^2 +1=xy_1   x^2 −xy_1 +1=0  x=((y_1 ±(√(y_1 ^2 −4)))/2)=((((−1+(√5))/2)±(√(((1−2(√(5+5)))/4)−4)))/2)  x=((((−1+(√5))/2)±(√((1−2(√(5+5−16)))/4)))/2)  x=((((−1+(√5))/2)±(√((−10−2(√5))/4)))/2)  x=((−1+(√5) ±i(√(10+2(√5))))/4)  when x+(1/x)=y_2   x^2 −xy_2 +1=0  x=((y_2 ±(√(y_2 ^2 −4)))/2)  x=((((−1−(√5))/2)±(√(((1+2(√(5+5)))/4)−4)))/2)  =((((−1−(√5))/2)±(√((−10+2(√5))/4)))/2)  =((−1−(√5) ±i(√(10−2(√5))))/4)

1)x4+x3+x2+x+1=0x2+x+1+1x+1x2=0(x2+1x2)+(x+1x)+1=0y=x+1xy22+y+1=0y2+y1=0y=1±1+42=1±52=1+52and152sox+1x=y1andx+1x=y2y1=1+52andy2=152x+1x=y1x2+1=xy1x2xy1+1=0x=y1±y1242=1+52±125+5442x=1+52±125+51642x=1+52±102542x=1+5±i10+254whenx+1x=y2x2xy2+1=0x=y2±y2242x=152±1+25+5442=152±10+2542=15±i10254

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Nov/18

or solution  x^4 +x^3 +x^2 +x+1=0  (x−1)(x^4 +x^3 +x^2 +x+1)=0  x^5 −1=0  x^5 =1=cos2kπ+isin2π  x=cos(((2kπ)/5))+isin(((2kπ)/5))  so roots are ...put k=0,±1,±2

orsolutionx4+x3+x2+x+1=0(x1)(x4+x3+x2+x+1)=0x51=0x5=1=cos2kπ+isin2πx=cos(2kπ5)+isin(2kπ5)sorootsare...putk=0,±1,±2

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Nov/18

2)x^6 (x+1)+x^4 (x+1)+x^2 (x+1)+1(x+1)=0  (x+1)(x^6 +x^4 +x^2 +1)=0  (x+1){x^4 (x^2 +1)+1(x^2 +1)}=0  (x+1)(x^2 +1)(x^4 +1)=0  when x+1=0  x=−1  x^2 +1=0  x^2 =−1=i^2   x=±i  x^4 +1=0  x^4 =−1=cos(2kπ+π)+isin(2kπ+π)  x=cos(((2k+1)/4)π)+isin(((2k+1)/4)π)

2)x6(x+1)+x4(x+1)+x2(x+1)+1(x+1)=0(x+1)(x6+x4+x2+1)=0(x+1){x4(x2+1)+1(x2+1)}=0(x+1)(x2+1)(x4+1)=0whenx+1=0x=1x2+1=0x2=1=i2x=±ix4+1=0x4=1=cos(2kπ+π)+isin(2kπ+π)x=cos(2k+14π)+isin(2k+14π)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com