Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 48027 by ajfour last updated on 18/Nov/18

Commented by ajfour last updated on 18/Nov/18

If OP = 1 and all areas like  ABPA  are equal to all areas   like OBPCO  then find ellipse  parameters a and b.

$${If}\:{OP}\:=\:\mathrm{1}\:{and}\:{all}\:{areas}\:{like} \\ $$$${ABPA}\:\:{are}\:{equal}\:{to}\:{all}\:{areas}\: \\ $$$${like}\:{OBPCO}\:\:{then}\:{find}\:{ellipse} \\ $$$${parameters}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}}. \\ $$

Answered by mr W last updated on 18/Nov/18

(x^2 /a^2 )+(y^2 /b^2 )=1  r^2 (((cos^2  θ)/a^2 )+((sin^2  θ)/b^2 ))=1  r^2 =((a^2 b^2 )/(a^2 sin^2  θ+b^2 cos^2  θ))  at θ=(π/4): r=1  ⇒a^2 +b^2 =2a^2 b^2    ...(i)  ∫_0 ^(π/4) ((r^2 dθ)/2)=(3/4)×((πab)/4)  ∫_0 ^(π/4) ((a^2 b^2 dθ)/(a^2 sin^2  θ+b^2 cos^2  θ))=((3πab)/8)  [tan^(−1) ((a/b)tan θ)]_0 ^(π/4) =((3π)/8)  tan^(−1) ((a/b))=((3π)/8)  (a/b)=tan (((3π)/8))=((cos (π/8))/(sin (π/8)))  ⇒a=k cos (π/8)  ⇒b=k sin (π/8)  put this into (i):  ⇒k^2 =2k^4 (((sin (π/4))/2))^2   ⇒1=2k^2 ((1/(2(√2))))^2   ⇒k=2  ⇒a=2 cos (π/8)  ⇒b=2 sin (π/8)

$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${r}^{\mathrm{2}} \left(\frac{\mathrm{cos}^{\mathrm{2}} \:\theta}{{a}^{\mathrm{2}} }+\frac{\mathrm{sin}^{\mathrm{2}} \:\theta}{{b}^{\mathrm{2}} }\right)=\mathrm{1} \\ $$$${r}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta} \\ $$$${at}\:\theta=\frac{\pi}{\mathrm{4}}:\:{r}=\mathrm{1} \\ $$$$\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} \:\:\:...\left({i}\right) \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{r}^{\mathrm{2}} {d}\theta}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{4}}×\frac{\pi{ab}}{\mathrm{4}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} {d}\theta}{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}=\frac{\mathrm{3}\pi{ab}}{\mathrm{8}} \\ $$$$\left[\mathrm{tan}^{−\mathrm{1}} \left(\frac{{a}}{{b}}\mathrm{tan}\:\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} =\frac{\mathrm{3}\pi}{\mathrm{8}} \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left(\frac{{a}}{{b}}\right)=\frac{\mathrm{3}\pi}{\mathrm{8}} \\ $$$$\frac{{a}}{{b}}=\mathrm{tan}\:\left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)=\frac{\mathrm{cos}\:\frac{\pi}{\mathrm{8}}}{\mathrm{sin}\:\frac{\pi}{\mathrm{8}}} \\ $$$$\Rightarrow{a}={k}\:\mathrm{cos}\:\frac{\pi}{\mathrm{8}} \\ $$$$\Rightarrow{b}={k}\:\mathrm{sin}\:\frac{\pi}{\mathrm{8}} \\ $$$${put}\:{this}\:{into}\:\left({i}\right): \\ $$$$\Rightarrow{k}^{\mathrm{2}} =\mathrm{2}{k}^{\mathrm{4}} \left(\frac{\mathrm{sin}\:\frac{\pi}{\mathrm{4}}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{1}=\mathrm{2}{k}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{k}=\mathrm{2} \\ $$$$\Rightarrow{a}=\mathrm{2}\:\mathrm{cos}\:\frac{\pi}{\mathrm{8}} \\ $$$$\Rightarrow{b}=\mathrm{2}\:\mathrm{sin}\:\frac{\pi}{\mathrm{8}} \\ $$

Commented by ajfour last updated on 18/Nov/18

Thank you SIR.

$${Thank}\:{you}\:\mathcal{SIR}. \\ $$

Answered by ajfour last updated on 18/Nov/18

I get  a=(1/((√2)sin (π/8))) ; b = (1/((√2)cos (π/8))) .

$${I}\:{get}\:\:\boldsymbol{{a}}=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\mathrm{sin}\:\left(\pi/\mathrm{8}\right)}\:;\:\boldsymbol{{b}}\:=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\mathrm{cos}\:\left(\pi/\mathrm{8}\right)}\:. \\ $$

Commented by mr W last updated on 18/Nov/18

correct sir!  this is the same as  a=2 cos (π/8)  b=2 sin (π/8)

$${correct}\:{sir}! \\ $$$${this}\:{is}\:{the}\:{same}\:{as} \\ $$$${a}=\mathrm{2}\:\mathrm{cos}\:\frac{\pi}{\mathrm{8}} \\ $$$${b}=\mathrm{2}\:\mathrm{sin}\:\frac{\pi}{\mathrm{8}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com