Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 48042 by maxmathsup by imad last updated on 18/Nov/18

find the value of  ∫_(−∞) ^(+∞)    ((2x+1)/((x^2 +i)(x^2 +4)))dx   (i^2 =−1)

$${find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{\mathrm{2}{x}+\mathrm{1}}{\left({x}^{\mathrm{2}} +{i}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\right)}{dx}\:\:\:\left({i}^{\mathrm{2}} =−\mathrm{1}\right) \\ $$

Commented by maxmathsup by imad last updated on 20/Nov/18

let A =∫_(−∞) ^(+∞)   ((2x+1)/((x^2 +i)(x^2 +4)))dx and the complex function   ϕ(z) =((2z+1)/((z^2 +i)(z^2 +4))) ⇒ϕ(z)=((2z+1)/((z^2 −((√(−i)))^2 )(z^2 −(2i)^2 )))  =((2z+1)/((z−(√(−i)))(z+(√(−i)))(z−2i)(z+2i))) =((2z+1)/((z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )(z−2i)(z+2i)))  tbe ples of are +^− e^(−((iπ)/4))   and +^− (2i) residus theorem give  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ{ Res(ϕ,−e^(−((iπ)/4)) ) +Res(ϕ,2i)}  Res(ϕ,−e^(−((iπ)/4)) ) =((−2e^(−((iπ)/4))  +1)/(−2 e^(−((iπ)/4)) (e^(−((iπ)/2))  +4))) =((2 e^(−((iπ)/4)) −1)/(2 e^(−((iπ)/4)) (4−i)))  Res(ϕ,2i) =((4i +1)/((4i)((2i)^2 +i))) =((4i+1)/(4i{−4+i})) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ ((2 e^(−((iπ)/4)) −1)/(2 e^(−((iπ)/4)) (4−i))) +((4i+1)/(4i(−4+i)))} =A .

$${let}\:{A}\:=\int_{−\infty} ^{+\infty} \:\:\frac{\mathrm{2}{x}+\mathrm{1}}{\left({x}^{\mathrm{2}} +{i}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\right)}{dx}\:{and}\:{the}\:{complex}\:{function}\: \\ $$$$\varphi\left({z}\right)\:=\frac{\mathrm{2}{z}+\mathrm{1}}{\left({z}^{\mathrm{2}} +{i}\right)\left({z}^{\mathrm{2}} +\mathrm{4}\right)}\:\Rightarrow\varphi\left({z}\right)=\frac{\mathrm{2}{z}+\mathrm{1}}{\left({z}^{\mathrm{2}} −\left(\sqrt{−{i}}\right)^{\mathrm{2}} \right)\left({z}^{\mathrm{2}} −\left(\mathrm{2}{i}\right)^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{2}{z}+\mathrm{1}}{\left({z}−\sqrt{−{i}}\right)\left({z}+\sqrt{−{i}}\right)\left({z}−\mathrm{2}{i}\right)\left({z}+\mathrm{2}{i}\right)}\:=\frac{\mathrm{2}{z}+\mathrm{1}}{\left({z}−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}+{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}−\mathrm{2}{i}\right)\left({z}+\mathrm{2}{i}\right)} \\ $$$${tbe}\:{ples}\:{of}\:{are}\:\overset{−} {+}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:\:{and}\:\overset{−} {+}\left(\mathrm{2}{i}\right)\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:{Res}\left(\varphi,−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\:+{Res}\left(\varphi,\mathrm{2}{i}\right)\right\} \\ $$$${Res}\left(\varphi,−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\:=\frac{−\mathrm{2}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:+\mathrm{1}}{−\mathrm{2}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \left({e}^{−\frac{{i}\pi}{\mathrm{2}}} \:+\mathrm{4}\right)}\:=\frac{\mathrm{2}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} −\mathrm{1}}{\mathrm{2}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \left(\mathrm{4}−{i}\right)} \\ $$$${Res}\left(\varphi,\mathrm{2}{i}\right)\:=\frac{\mathrm{4}{i}\:+\mathrm{1}}{\left(\mathrm{4}{i}\right)\left(\left(\mathrm{2}{i}\right)^{\mathrm{2}} +{i}\right)}\:=\frac{\mathrm{4}{i}+\mathrm{1}}{\mathrm{4}{i}\left\{−\mathrm{4}+{i}\right\}}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:\frac{\mathrm{2}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} −\mathrm{1}}{\mathrm{2}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \left(\mathrm{4}−{i}\right)}\:+\frac{\mathrm{4}{i}+\mathrm{1}}{\mathrm{4}{i}\left(−\mathrm{4}+{i}\right)}\right\}\:={A}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com