Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 48064 by maxmathsup by imad last updated on 18/Nov/18

calculate A =∫_0 ^1 (1+x^2 )(√(1−x^2 ))dx  −∫_0 ^1 (1−x^2 )(√(1+x^2 ))dx

calculateA=01(1+x2)1x2dx01(1x2)1+x2dx

Commented by maxmathsup by imad last updated on 20/Nov/18

we have A =H−K   H=∫_0 ^1 (1+x^2 )(√(1−x^2 ))dx =_(x=sint)   ∫_0 ^(π/2) (1+sin^2 t)cost costdt  =∫_0 ^(π/2)  cos^2 t dt +∫_0 ^(π/2) cos^2 t sin^2 tdt   =(1/2)∫_0 ^(π/2) (1+cos(2t))dt +(1/4) ∫_0 ^(π/2)  sin^2 (2t)dt  =(π/4) +(1/4)[sin(2t)]_0 ^(π/2)  +(1/8) ∫_0 ^(π/2) (1−cos(4t))dt  =(π/4) +0  +(π/(16)) −(1/(32)) ∫_0 ^(π/2)  cos(4t)dt=((5π)/(16)) −(1/(4.32))[sin(4t)]_0 ^(π/2)   =((5π)/(16)) let calculate K=∫_0 ^1 (1−x^2 )(√(1+x^2 ))dx ⇒  K =_(x=sh(t) )     ∫_0 ^(argsh(1)) (1−sh^2 t)ch(t)ch(t)dt  = ∫_0 ^(ln(1+(√2))) (1−sh^2 t)ch^2 t dt =∫_0 ^(ln(1+(√2))) (1−((ch(2t)−1)/2))(((1+ch(2t))/2))dt  =(1/4)∫_0 ^(ln(1+(√2)))  (3−ch(2t))(1+ch(2t))dt  =(1/4) ∫_0 ^(ln(1+(√2))) {3+3ch(2t)−ch(2t)−ch^2 (2t)}dt  =(1/4) ∫_0 ^(ln(1+(√2))) {3 +2ch(2t) −((1+ch(4t))/2)}dt  =(3/4)ln(1+(√2)) +(1/2) ∫_0 ^(ln(1+(√2))) ch(2t)dt −(1/8)ln(1+(√2))−(1/8) ∫_0 ^(ln(1+(√2))) ch(4t)dt  =(5/8)ln(1+(√2)) +(1/4)[sh(2t)]_0 ^(ln(1+(√2)))    −(1/(32))[sh(4t)]_0 ^(ln(1+(√2)))   =(5/8)ln(1+(√2))+(1/4)[((e^(2t) −e^(−2t) )/2)]_0 ^(ln(1+(√2)))  −(1/(32))[((e^(4t) −e^(−4t) )/2)]_0 ^(ln(1+(√2)))   K=(5/8)ln(1+(√2)) +(1/8)( (1+(√2))^2 −(1/((1+(√2))^2 )))−(1/(64))( (1+(√2))^4 −(1/((1+(√2))^4 )))  A=((5π)/(16)) −K  so the value of A is known.

wehaveA=HKH=01(1+x2)1x2dx=x=sint0π2(1+sin2t)costcostdt=0π2cos2tdt+0π2cos2tsin2tdt=120π2(1+cos(2t))dt+140π2sin2(2t)dt=π4+14[sin(2t)]0π2+180π2(1cos(4t))dt=π4+0+π161320π2cos(4t)dt=5π1614.32[sin(4t)]0π2=5π16letcalculateK=01(1x2)1+x2dxK=x=sh(t)0argsh(1)(1sh2t)ch(t)ch(t)dt=0ln(1+2)(1sh2t)ch2tdt=0ln(1+2)(1ch(2t)12)(1+ch(2t)2)dt=140ln(1+2)(3ch(2t))(1+ch(2t))dt=140ln(1+2){3+3ch(2t)ch(2t)ch2(2t)}dt=140ln(1+2){3+2ch(2t)1+ch(4t)2}dt=34ln(1+2)+120ln(1+2)ch(2t)dt18ln(1+2)180ln(1+2)ch(4t)dt=58ln(1+2)+14[sh(2t)]0ln(1+2)132[sh(4t)]0ln(1+2)=58ln(1+2)+14[e2te2t2]0ln(1+2)132[e4te4t2]0ln(1+2)K=58ln(1+2)+18((1+2)21(1+2)2)164((1+2)41(1+2)4)A=5π16KsothevalueofAisknown.

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Nov/18

=∫_0 ^1 (√(1−x^2 )) +x^2 (√(1−x^2 )) −(√(1+x^2 )) +x^2 (√(1+x^2 ))  dx  I_1 =∫_0 ^1 (√(1−x^2 )) dx  I_2 =∫_0 ^1 (√(1+x^2 )) dx  I_3 =∫_0 ^1 x^2 (√(1−x^2 )) dx  I_4 =∫_0 ^1 x^2 (√(1+x^2 )) dx  I=I_1 −I_2 +I_3 +I_4   use formulas attaching herewith tl solve...

=011x2+x21x21+x2+x21+x2dxI1=011x2dxI2=011+x2dxI3=01x21x2dxI4=01x21+x2dxI=I1I2+I3+I4useformulasattachingherewithtlsolve...

Commented by tanmay.chaudhury50@gmail.com last updated on 19/Nov/18

Commented by tanmay.chaudhury50@gmail.com last updated on 19/Nov/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com