Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 48066 by rahul 19 last updated on 18/Nov/18

(√(1/2)).(√((1/2)+(1/2)(√(1/2)))).(√((1/2)+(1/2)(√((1/2)+(1/2)(√(1/2))))))......∞=?

12.12+1212.12+1212+1212......=?

Commented by MJS last updated on 18/Nov/18

=(2/π)  approximated it but I can′t prove it

=2πapproximateditbutIcantproveit

Commented by maxmathsup by imad last updated on 19/Nov/18

we have (√(1/2))=cos((π/4)) ,(√((1/2)+(1/2)(√(1/2))))=(√((1+cos((π/4)))/2))=cos((π/8)) ...  S_n =cos((π/4))cos((π/8)).cos((π/(16)))...cos((π/2^n ))=Π_(k=2) ^n  cos((π/2^k ))  W_n =Π_(k=2) ^n  sin((π/2^k )) ⇒S_n .W_n =Π_(k=2) ^n cos((π/2^k ))sin((π/2^k ))  =(1/2^(n−1) )Π_(k=2) ^n  sin((π/2^(k−1) ))=(1/2^(n−1) )Π_(k=2) ^n   Π_(k=2) ^n  sin((π/2^(k−1) ))  =(1/2^(n−1) )Π_(k=2) ^n  Π_(k=1) ^(n−1)  sin((π/2^k ))  =(1/2^(n−1) )Π_(k=2) ^n   ((Π_(k=2) ^n  sin((π/2^k )))/(sin((π/(2n))))) =(1/(sin((π/2^n )))) (1/2^(n−1) ) .W_n  ⇒    S_n =(1/(2^(n−1)  sin((π/2^n )))) =(2/(2^n  sin((π/2^n )))) ∼ (2/(2^n .(π/2^n ))) (n→+∞) ⇒lim_(n→+∞)   S_n =(2/π) .

wehave12=cos(π4),12+1212=1+cos(π4)2=cos(π8)...Sn=cos(π4)cos(π8).cos(π16)...cos(π2n)=k=2ncos(π2k)Wn=k=2nsin(π2k)Sn.Wn=k=2ncos(π2k)sin(π2k)=12n1k=2nsin(π2k1)=12n1k=2nk=2nsin(π2k1)=12n1k=2nk=1n1sin(π2k)=12n1k=2nk=2nsin(π2k)sin(π2n)=1sin(π2n)12n1.WnSn=12n1sin(π2n)=22nsin(π2n)22n.π2n(n+)limn+Sn=2π.

Commented by rahul 19 last updated on 20/Nov/18

thank you prof Abdo����

Commented by Abdo msup. last updated on 20/Nov/18

you are welcome sir.

youarewelcomesir.

Answered by arcana last updated on 19/Nov/18

cos(θ)=(√(1/2))  (√(1/2))∙(√((1/2)+(1/2)(√(1/2))))=cos(θ)(√((1+cos(θ))/2))=cos(θ)cos(θ/2)  cos(θ)cos(θ/2)(√((1+cos(θ/2))/2))=cos(θ)cos(θ/2)cos(θ/4)  asi podemos escribirlo como  cos(θ)∙cos(θ/2)∙cos(θ/4)∙...=Π_(i=0) ^∞ cos((θ/2^i ))  si multiplicamos y dividimos por sin((θ/2^i ))  ((cos(θ)∙cos(θ/2)∙cos(θ/4)∙...∙(1/2)2cos(θ/2^i )∙sin(θ/2^i ))/(sin(θ/2^i )))  usando sin(θ/2^(i−1) )=2sin(θ/2^i )cos(θ/2^i )  ((cos(θ)∙cos(θ/2)∙cos(θ/4)∙...∙(1/(2 ))∙(1/2)2cos(θ/2^(i−1) )∙sin(θ/2^(i−1) ))/(sin(θ/2^i )))  ((cos(θ)∙cos(θ/2)∙cos(θ/4)∙...∙(1/2^2 )∙(1/2)2cos(θ/2^(i−2) )∙sin(θ/2^(i−2) ))/(sin(θ/2^i )))  ⋮  ((sin(2θ))/(2^(i+1) sin(θ/2^i )))=((sin(2θ))/(2^(i+1) ((sin(θ/2^i ))/(θ/2^i ))∙(θ/2^i )))  luego    lim_(i→∞)  ((sin(2θ))/(2^(i+1) ((sin(θ/2^i ))/(θ/2^i ))∙(θ/2^i )))=((sin(2θ))/(2^(i+1) ∙(θ/2^i )lim_(i→∞) ((sin(θ/2^i ))/((θ/2^i )))))  =((sin(2θ))/(2θ))=(1/(2θ))   ya que θ=(π/4)  ⇒Π_(i=0) ^∞ cos((θ/2^i ))=(1/(π/2))=(2/π)

cos(θ)=121212+1212=cos(θ)1+cos(θ)2=cos(θ)cos(θ/2)cos(θ)cos(θ/2)1+cos(θ/2)2=cos(θ)cos(θ/2)cos(θ/4)asipodemosescribirlocomocos(θ)cos(θ/2)cos(θ/4)...=i=0cos(θ2i)simultiplicamosydividimosporsin(θ2i)cos(θ)cos(θ/2)cos(θ/4)...122cos(θ/2i)sin(θ/2i)sin(θ/2i)usandosin(θ/2i1)=2sin(θ/2i)cos(θ/2i)cos(θ)cos(θ/2)cos(θ/4)...12122cos(θ/2i1)sin(θ/2i1)sin(θ/2i)cos(θ)cos(θ/2)cos(θ/4)...122122cos(θ/2i2)sin(θ/2i2)sin(θ/2i)sin(2θ)2i+1sin(θ/2i)=sin(2θ)2i+1sin(θ/2i)θ/2i(θ/2i)luegolimisin(2θ)2i+1sin(θ/2i)θ/2i(θ/2i)=sin(2θ)2i+1(θ/2i)limisin(θ/2i)(θ/2i)=sin(2θ)2θ=12θyaqueθ=π4i=0cos(θ2i)=1π/2=2π

Commented by rahul 19 last updated on 19/Nov/18

thank you so much Arcana ,����

Commented by ajfour last updated on 19/Nov/18

superb!

superb!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com