Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 48067 by maxmathsup by imad last updated on 18/Nov/18

let y>0 give ∫_0 ^∞    (x^y /(e^x −1))dx at form of series.

$${let}\:{y}>\mathrm{0}\:{give}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{{y}} }{{e}^{{x}} −\mathrm{1}}{dx}\:{at}\:{form}\:{of}\:{series}. \\ $$

Commented bymaxmathsup by imad last updated on 19/Nov/18

let A(y) =∫_0 ^∞  (x^y /(e^x −1))dx  ⇒A(y) =∫_0 ^∞   ((e^(−x)  x^y )/(1−e^(−x) ))dx  = ∫_0 ^∞   e^(−x) x^y  (Σ_(n=0) ^∞  e^(−nx) )dx =Σ_(n=0) ^∞  ∫_0 ^∞  e^(−(n+1)x)  x^y dx  =_((n+1)x=t)    Σ_(n=0) ^∞  ∫_0 ^∞  e^(−t)  ((t/(n+1)))^y  (dt/(n+1))  =Σ_(n=0) ^∞   (1/((n+1)^(y+1) )) ∫_0 ^∞  e^(−t)  t^y  dt   but Γ(x)=∫_0 ^∞  t^(x−1) e^(−t) dt (x>0)⇒  ∫_0 ^∞  t^y e^(−t) dt =Γ(y+1)  and Σ_(n=0) ^∞  (1/((n+1)^(y+1) )) =Σ_(n=1) ^∞  (1/n^(y+1) ) =ξ(y+1) ⇒  A(y)=ξ(y+1)Γ(y+1) .

$${let}\:{A}\left({y}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{x}^{{y}} }{{e}^{{x}} −\mathrm{1}}{dx}\:\:\Rightarrow{A}\left({y}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}} \:{x}^{{y}} }{\mathrm{1}−{e}^{−{x}} }{dx} \\ $$ $$=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} {x}^{{y}} \:\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{nx}} \right){dx}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left({n}+\mathrm{1}\right){x}} \:{x}^{{y}} {dx} \\ $$ $$=_{\left({n}+\mathrm{1}\right){x}={t}} \:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}} \:\left(\frac{{t}}{{n}+\mathrm{1}}\right)^{{y}} \:\frac{{dt}}{{n}+\mathrm{1}} \\ $$ $$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{{y}+\mathrm{1}} }\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}} \:{t}^{{y}} \:{dt}\:\:\:{but}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} {e}^{−{t}} {dt}\:\left({x}>\mathrm{0}\right)\Rightarrow \\ $$ $$\int_{\mathrm{0}} ^{\infty} \:{t}^{{y}} {e}^{−{t}} {dt}\:=\Gamma\left({y}+\mathrm{1}\right)\:\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{{y}+\mathrm{1}} }\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{y}+\mathrm{1}} }\:=\xi\left({y}+\mathrm{1}\right)\:\Rightarrow \\ $$ $${A}\left({y}\right)=\xi\left({y}+\mathrm{1}\right)\Gamma\left({y}+\mathrm{1}\right)\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com