Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 48068 by maxmathsup by imad last updated on 18/Nov/18

let u_n =∫_0 ^∞   (dt/(1+t^n ))  find nature of Σ u_n     and Σ (u_n /n^2 )  and Σ (u_n /n^3 )

letun=0dt1+tnfindnatureofΣunandΣunn2andΣunn3

Commented by Abdo msup. last updated on 19/Nov/18

changement t^n =x give t=x^(1/n)  ⇒  u_n = ∫_0 ^∞    (1/(1+x)) (1/n)x^((1/n)−1) dx =(1/n) ∫_0 ^∞   (x^((1/n)−1) /(1+x))dx  =(1/n) (π/(sin((π/n)))) ⇒ u_n = (π/(nsin((π/n))))  2)we have u_n ∼ (π/(n.(π/n))) ⇒u_n →1(n→+∞) so Σ u_n  diverge  because u_n dont converge to 0) also  (u_n /n^2 ) ∼ (1/n^2 ) and Σ (1/n^2 ) converge ⇒Σ (u_n /n^2 ) converge  (u_n /n^3 ) ∼ (1/n^3 ) and?Σ(1/n^3 ) converges ⇒Σ(u_n /n^3 ) converges.

changementtn=xgivet=x1nun=011+x1nx1n1dx=1n0x1n11+xdx=1nπsin(πn)un=πnsin(πn)2)wehaveunπn.πnun1(n+)soΣundivergebecauseundontconvergeto0)alsounn21n2andΣ1n2convergeΣunn2convergeunn31n3and?Σ1n3convergesΣunn3converges.

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Nov/18

t^n =tan^2 θ   nt^(n−1) dt=2tanθsec^2 θdθ  ∫_0 ^(π/2) ((2tanθsec^2 θdθ)/(sec^2 θ×n(tan^2 θ)^((n−1)/n) ))  =(2/n)∫_0 ^(π/2)  (tanθ)^(1−((2n−2)/n)) dθ  (2/n)∫_0 ^(π/2) (((sinθ)^((2−n)/n) )/((cosθ)^((2−n)/n) ))dθ  (2/n)∫(sinθ)^((2−n)/2) ×(cosθ)^((n−2)/n) dθ  2p−1=((2−n)/2)   p=((4−n)/4)=(1−(n/4))  2q−1=((n−2)/2)   2q=(n/2)   q=(n/4)  now formula 2∫_0 ^(π/2) (sinθ)^(2p−1) (cosθ)^(2q−1) dθ  =((⌈(p)⌈(q))/(⌈(p+q)))  =(1/n)×((⌈(1−(n/4))⌈((n/4)))/(⌈(1)))  =(1/n)×(π/(sin(((nπ)/4))))=(π/n)×(1/(sin(((nπ)/4))))  so u_n =(π/n)×(1/(sin(((nπ)/4))))

tn=tan2θntn1dt=2tanθsec2θdθ0π22tanθsec2θdθsec2θ×n(tan2θ)n1n=2n0π2(tanθ)12n2ndθ2n0π2(sinθ)2nn(cosθ)2nndθ2n(sinθ)2n2×(cosθ)n2ndθ2p1=2n2p=4n4=(1n4)2q1=n222q=n2q=n4nowformula20π2(sinθ)2p1(cosθ)2q1dθ=(p)(q)(p+q)=1n×(1n4)(n4)(1)=1n×πsin(nπ4)=πn×1sin(nπ4)soun=πn×1sin(nπ4)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com