Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 48068 by maxmathsup by imad last updated on 18/Nov/18

let u_n =∫_0 ^∞   (dt/(1+t^n ))  find nature of Σ u_n     and Σ (u_n /n^2 )  and Σ (u_n /n^3 )

$${let}\:{u}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\mathrm{1}+{t}^{{n}} } \\ $$$${find}\:{nature}\:{of}\:\Sigma\:{u}_{{n}} \:\:\:\:{and}\:\Sigma\:\frac{{u}_{{n}} }{{n}^{\mathrm{2}} }\:\:{and}\:\Sigma\:\frac{{u}_{{n}} }{{n}^{\mathrm{3}} } \\ $$

Commented by Abdo msup. last updated on 19/Nov/18

changement t^n =x give t=x^(1/n)  ⇒  u_n = ∫_0 ^∞    (1/(1+x)) (1/n)x^((1/n)−1) dx =(1/n) ∫_0 ^∞   (x^((1/n)−1) /(1+x))dx  =(1/n) (π/(sin((π/n)))) ⇒ u_n = (π/(nsin((π/n))))  2)we have u_n ∼ (π/(n.(π/n))) ⇒u_n →1(n→+∞) so Σ u_n  diverge  because u_n dont converge to 0) also  (u_n /n^2 ) ∼ (1/n^2 ) and Σ (1/n^2 ) converge ⇒Σ (u_n /n^2 ) converge  (u_n /n^3 ) ∼ (1/n^3 ) and?Σ(1/n^3 ) converges ⇒Σ(u_n /n^3 ) converges.

$${changement}\:{t}^{{n}} ={x}\:{give}\:{t}={x}^{\frac{\mathrm{1}}{{n}}} \:\Rightarrow \\ $$$${u}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\mathrm{1}+{x}}\:\frac{\mathrm{1}}{{n}}{x}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} {dx}\:=\frac{\mathrm{1}}{{n}}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} }{\mathrm{1}+{x}}{dx} \\ $$$$=\frac{\mathrm{1}}{{n}}\:\frac{\pi}{{sin}\left(\frac{\pi}{{n}}\right)}\:\Rightarrow\:{u}_{{n}} =\:\frac{\pi}{{nsin}\left(\frac{\pi}{{n}}\right)} \\ $$$$\left.\mathrm{2}\right){we}\:{have}\:{u}_{{n}} \sim\:\frac{\pi}{{n}.\frac{\pi}{{n}}}\:\Rightarrow{u}_{{n}} \rightarrow\mathrm{1}\left({n}\rightarrow+\infty\right)\:{so}\:\Sigma\:{u}_{{n}} \:{diverge} \\ $$$$\left.{because}\:{u}_{{n}} {dont}\:{converge}\:{to}\:\mathrm{0}\right)\:{also} \\ $$$$\frac{{u}_{{n}} }{{n}^{\mathrm{2}} }\:\sim\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:{and}\:\Sigma\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:{converge}\:\Rightarrow\Sigma\:\frac{{u}_{{n}} }{{n}^{\mathrm{2}} }\:{converge} \\ $$$$\frac{{u}_{{n}} }{{n}^{\mathrm{3}} }\:\sim\:\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:{and}?\Sigma\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:{converges}\:\Rightarrow\Sigma\frac{{u}_{{n}} }{{n}^{\mathrm{3}} }\:{converges}. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Nov/18

t^n =tan^2 θ   nt^(n−1) dt=2tanθsec^2 θdθ  ∫_0 ^(π/2) ((2tanθsec^2 θdθ)/(sec^2 θ×n(tan^2 θ)^((n−1)/n) ))  =(2/n)∫_0 ^(π/2)  (tanθ)^(1−((2n−2)/n)) dθ  (2/n)∫_0 ^(π/2) (((sinθ)^((2−n)/n) )/((cosθ)^((2−n)/n) ))dθ  (2/n)∫(sinθ)^((2−n)/2) ×(cosθ)^((n−2)/n) dθ  2p−1=((2−n)/2)   p=((4−n)/4)=(1−(n/4))  2q−1=((n−2)/2)   2q=(n/2)   q=(n/4)  now formula 2∫_0 ^(π/2) (sinθ)^(2p−1) (cosθ)^(2q−1) dθ  =((⌈(p)⌈(q))/(⌈(p+q)))  =(1/n)×((⌈(1−(n/4))⌈((n/4)))/(⌈(1)))  =(1/n)×(π/(sin(((nπ)/4))))=(π/n)×(1/(sin(((nπ)/4))))  so u_n =(π/n)×(1/(sin(((nπ)/4))))

$${t}^{{n}} ={tan}^{\mathrm{2}} \theta\:\:\:{nt}^{{n}−\mathrm{1}} {dt}=\mathrm{2}{tan}\theta{sec}^{\mathrm{2}} \theta{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2}{tan}\theta{sec}^{\mathrm{2}} \theta{d}\theta}{{sec}^{\mathrm{2}} \theta×{n}\left({tan}^{\mathrm{2}} \theta\right)^{\frac{{n}−\mathrm{1}}{{n}}} } \\ $$$$=\frac{\mathrm{2}}{{n}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left({tan}\theta\right)^{\mathrm{1}−\frac{\mathrm{2}{n}−\mathrm{2}}{{n}}} {d}\theta \\ $$$$\frac{\mathrm{2}}{{n}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\left({sin}\theta\right)^{\frac{\mathrm{2}−{n}}{{n}}} }{\left({cos}\theta\right)^{\frac{\mathrm{2}−{n}}{{n}}} }{d}\theta \\ $$$$\frac{\mathrm{2}}{{n}}\int\left({sin}\theta\right)^{\frac{\mathrm{2}−{n}}{\mathrm{2}}} ×\left({cos}\theta\right)^{\frac{{n}−\mathrm{2}}{{n}}} {d}\theta \\ $$$$\mathrm{2}{p}−\mathrm{1}=\frac{\mathrm{2}−{n}}{\mathrm{2}}\:\:\:{p}=\frac{\mathrm{4}−{n}}{\mathrm{4}}=\left(\mathrm{1}−\frac{{n}}{\mathrm{4}}\right) \\ $$$$\mathrm{2}{q}−\mathrm{1}=\frac{{n}−\mathrm{2}}{\mathrm{2}}\:\:\:\mathrm{2}{q}=\frac{{n}}{\mathrm{2}}\:\:\:{q}=\frac{{n}}{\mathrm{4}} \\ $$$${now}\:{formula}\:\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sin}\theta\right)^{\mathrm{2}{p}−\mathrm{1}} \left({cos}\theta\right)^{\mathrm{2}{q}−\mathrm{1}} {d}\theta \\ $$$$=\frac{\lceil\left({p}\right)\lceil\left({q}\right)}{\lceil\left({p}+{q}\right)} \\ $$$$=\frac{\mathrm{1}}{{n}}×\frac{\lceil\left(\mathrm{1}−\frac{{n}}{\mathrm{4}}\right)\lceil\left(\frac{{n}}{\mathrm{4}}\right)}{\lceil\left(\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{{n}}×\frac{\pi}{{sin}\left(\frac{{n}\pi}{\mathrm{4}}\right)}=\frac{\pi}{{n}}×\frac{\mathrm{1}}{{sin}\left(\frac{{n}\pi}{\mathrm{4}}\right)} \\ $$$${so}\:{u}_{{n}} =\frac{\pi}{{n}}×\frac{\mathrm{1}}{{sin}\left(\frac{{n}\pi}{\mathrm{4}}\right)} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com