Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 48104 by wasim last updated on 19/Nov/18

solve this    ∫(2 sinx+cosx)/(2+3sinx+sin^(2x) ) dx

solvethis(2sinx+cosx)/(2+3sinx+sin2x)dx

Answered by MJS last updated on 19/Nov/18

Weierstrass−substitution  t=tan (x/2) ⇒ x=2arctan t; dx=((2dt)/(1+t^2 ))  sin x =((2t)/(1+t^2 )); cos x =((1−t^2 )/(1+t^2 ))  −∫((t^2 −4t−1)/((t+1)^2 (t^2 +t+1)))dt=  =2∫(dt/(t+1))−4∫(dt/((t+1)^2 ))−∫((2t−3)/(t^2 +t+1))dt=  =2∫(dt/(t+1))−4∫(dt/((t+1)^2 ))−∫((2x+1)/(t^2 +t+1))dt+4∫(dt/(t^2 +t+1))  =2ln (t+1) +(4/(t+1))−ln (t^2 +t+1) +((8(√3))/3)arctan (((√3)/3)(2t+1)) =  =ln (((t+1)^2 )/(t^2 +t+1)) +(4/(t+1))+((8(√3))/3)arctan (((√3)/3)(2t+1)) =  =ln ((1+sin x)/(2+sin x)) +ln 2 +2+2sec x −2tan x +((8(√3))/3)arctan (((√3)/3)(1+2tan (x/2))) =  =ln ((1+sin x)/(2+sin x)) +2sec x −2tan x +((8(√3))/3)arctan (((√3)/3)(1+2tan (x/2))) +C

Weierstrasssubstitutiont=tanx2x=2arctant;dx=2dt1+t2sinx=2t1+t2;cosx=1t21+t2t24t1(t+1)2(t2+t+1)dt==2dtt+14dt(t+1)22t3t2+t+1dt==2dtt+14dt(t+1)22x+1t2+t+1dt+4dtt2+t+1=2ln(t+1)+4t+1ln(t2+t+1)+833arctan(33(2t+1))==ln(t+1)2t2+t+1+4t+1+833arctan(33(2t+1))==ln1+sinx2+sinx+ln2+2+2secx2tanx+833arctan(33(1+2tanx2))==ln1+sinx2+sinx+2secx2tanx+833arctan(33(1+2tanx2))+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com