Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 48105 by lhfgfgjokf last updated on 19/Nov/18

∫_(−1) ^1  ((√(1+x+x^2 ))− (√(1−x−x^2 )) )dx =

11(1+x+x21xx2)dx=

Commented by maxmathsup by imad last updated on 19/Nov/18

I =H−K with H =∫_(−1) ^1 (√(x^2 +x+1))dx  H = ∫_(−1) ^1  (√((x+(1/2))^2 +(3/4)))dx =_(x+(1/2)=((√3)/2)sh(t))     ∫_(−argsh((1/(√3)))) ^(argsh((√3))) ((√3)/2) ch(t)((√3)/2)ch(t)dt  =(3/4) ∫_(−ln((1/(√3))+(2/(√3)))) ^(ln((√3)+2))  ((1+ch(2t))/2) dt =(3/8){ln((√3)+2)+ln((√3))}  +(3/(16))[sh(2t)]_(−ln((√3))) ^(ln(2+(√3)))  =(3/8){ln(2+(√3))+ln((√3))}+(3/(32)){e^(2t) −e^(−2t) ]_(−ln((√3))) ^(ln(2+(√3)))   =(3/8){ln(2+(√3)) +ln((√3))}+(3/(32)){(2+(√3))^2 −(1/((2+(√3))^2 )) −( (1/(((√3))^2 )) +((√3))^2 )}

I=HKwithH=11x2+x+1dxH=11(x+12)2+34dx=x+12=32sh(t)argsh(13)argsh(3)32ch(t)32ch(t)dt=34ln(13+23)ln(3+2)1+ch(2t)2dt=38{ln(3+2)+ln(3)}+316[sh(2t)]ln(3)ln(2+3)=38{ln(2+3)+ln(3)}+332{e2te2t]ln(3)ln(2+3)=38{ln(2+3)+ln(3)}+332{(2+3)21(2+3)2(1(3)2+(3)2)}

Commented by maxmathsup by imad last updated on 19/Nov/18

let calculate K =∫_(−1) ^1 (√(−x^2 −x +1))  K =∫_(−1) ^1  (√(1−(x^2 +x)))dx =∫_(−1) ^1 (√(1−((x+(1/2))^2  −(1/4))))dx  =∫_(−1) ^1 (√((5/4)−(x+(1/2))^2 ))dx=_(x+(1/2)=((√5)/2)sint)    ∫_(−arcsin((1/(√5)))) ^(arcsin((3/(√5))))   ((√5)/2) cost ((√5)/2) cost dt  =(5/4) ∫_(−arcsin((1/(√5)))) ^(arcsin((3/(√5)))) cos^2 t dt =(5/8) ∫_(−arcsin((1/(√5)))) ^(arcsin((3/((√5) )))) (1+cos(2t))dt  =(5/8){arcsin((3/(√5)))+arcsin((1/(√5)))}+(5/(16))[sin(2t)]_(−arcsin((1/((√5)))))) ^(arcsin((3/((√5) ))))   =(5/8){arcsin((3/(√5)))+arcsin((1/(√5))) +(5/(16)){sin(2arcsin((3/(√5)))+sin(2arcsin((1/(√5)))}  so the value of I is known .

letcalculateK=11x2x+1K=111(x2+x)dx=111((x+12)214)dx=1154(x+12)2dx=x+12=52sintarcsin(15)arcsin(35)52cost52costdt=54arcsin(15)arcsin(35)cos2tdt=58arcsin(15)arcsin(35)(1+cos(2t))dt=58{arcsin(35)+arcsin(15)}+516[sin(2t)]arcsin(15))arcsin(35)=58{arcsin(35)+arcsin(15)+516{sin(2arcsin(35)+sin(2arcsin(15)}sothevalueofIisknown.

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Nov/18

1+x+x^2   x^2 +2.x.(1/2)+(1/4)+(3/4)  (x+(1/2))^2 +(((√3)/2))^2   1−x−x^2   1−(x^2 +2.x.(1/2)+(1/4)−(1/4))  1+(1/4)−(x+(1/2))^2 =(((√5)/2))^2 −(x+(1/2))^2   formula ∫(√(a^2 +x^2 )) =  ((x(√(x^2 +a^2 )) )/2)+(a^2 /2)ln(x+(√(x^2 +a^2 )) )  formula ∫(√(a^2 −x^2 )) dx=  ((x(√(a^2 −x^2 )) )/2)+(a^2 /2)sin^(−1) ((x/a))  so first intregal is ∫_(−1) ^1 (√((x+(1/2))^2 +(((√3)/2))^2 ))   ∣(((x+(1/2))(√((x+(1/2))^2 +(((√3)/2))^2  )))/2)+(((((√3)/2))^2 )/2)ln{(x+(1/2))+(√((x+(1/2))^2 +(((√3)/2))^2 )) ∣_(−1) ^1   [{(((1+(1/2))(√((9/4)+(3/4))) )/2)+(3/8)ln{((3/2))+(√3) }−{(((((−1)/2))(√((1/4)+(3/4))))/2)+(3/8)ln∣((−1)/2)+1∣}]  =((((3/2))(√3))/2)+(3/8)ln{((3/2))+(√3) +(1/4)−(3/8)ln((1/2))  =((3(√3) +1)/4)+(3/8)ln3←value of first intregal  calculation of second intregal  ∫_(−1) ^1 (√((((√5)/2))^2 −(x+(1/2))^2 )) dx  =∣(((x+(1/2))(√((((√5)/2))^2 −(x+(1/2))^2 )))/2)+(((((√5)/2))^2 )/2)sin^(−1) ((((x+(1/2)))/((√5)/2)))∣_(−1) ^1   =[{((((3/2))(√((5/4)−(9/4))) )/2)+(5/8)sin^(−1) ((3/(√5)))}−{(((−(1/2))(√((5/4)−(1/4))))/2)+(5/8)sin^(−1) (((−1)/(√5)))}]  =[{((3i)/4)+(5/8)sin^(−1) ((3/(√5)))}−{((−1)/4)+(5/8)sin^(−1) (((−1)/(√5)))}]  =((1+3i)/4)+(5/8){sin^(−1) ((3/(√5)))+sin^(−1) ((1/(√5)))}  i=complex is coming so pls check the stdps  required answer is   [{((3(√3) +1)/4)+(3/8)ln3}−{((1+3i)/4)+(5/8){sin^(−1) ((3/(√5)))+sin^(−1) ((1/(√5)))}]

1+x+x2x2+2.x.12+14+34(x+12)2+(32)21xx21(x2+2.x.12+1414)1+14(x+12)2=(52)2(x+12)2formulaa2+x2=xx2+a22+a22ln(x+x2+a2)formulaa2x2dx=xa2x22+a22sin1(xa)sofirstintregalis11(x+12)2+(32)2(x+12)(x+12)2+(32)22+(32)22ln{(x+12)+(x+12)2+(32)211[{(1+12)94+342+38ln{(32)+3}{(12)14+342+38ln12+1}]=(32)32+38ln{(32)+3+1438ln(12)=33+14+38ln3valueoffirstintregalcalculationofsecondintregal11(52)2(x+12)2dx=∣(x+12)(52)2(x+12)22+(52)22sin1((x+12)52)11=[{(32)54942+58sin1(35)}{(12)54142+58sin1(15)}]=[{3i4+58sin1(35)}{14+58sin1(15)}]=1+3i4+58{sin1(35)+sin1(15)}i=complexiscomingsoplscheckthestdpsrequiredansweris[{33+14+38ln3}{1+3i4+58{sin1(35)+sin1(15)}]

Commented by maxmathsup by imad last updated on 19/Nov/18

there is no complex in this integral friend Tanmay...

thereisnocomplexinthisintegralfriendTanmay...

Commented by tanmay.chaudhury50@gmail.com last updated on 19/Nov/18

(√((5/4)−(9/4)))   =(√(−1))  iscoming  so pls check..

5494=1iscomingsoplscheck..

Commented by MJS last updated on 19/Nov/18

I get complex part too.  (√(1−x−x^2 )) ∈R ⇒ −((1+(√3))/2)≤x≤−((1−(√3))/2) ≈  ≈ −1.366≤x≤.366

Igetcomplexparttoo.1xx2R1+32x1321.366x.366

Commented by tanmay.chaudhury50@gmail.com last updated on 19/Nov/18

thank you sir....

thankyousir....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com