Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 48113 by ajfour last updated on 19/Nov/18

Answered by MJS last updated on 20/Nov/18

circle 1  c_1 : (x+o)^2 +y^2 −o^2 =0  circle 2  c_2 : (x−p)^2 +y^2 −p^2 =0  let 0<o<p  ellipse  ell: b^2 (x−q)^2 +a^2 y^2 −a^2 b^2 =0  0<o<p ⇒ q>0  c_1 ∩ell={P_1 , P_2 }={ ((x),((−y)) ),  ((x),((+y)) )}  a^2 c_1 −ell:  (a^2 −b^2 )x^2 +2(a^2 o+b^2 q)x+b^2 (a^2 −q^2 )=0  we need B^2 −4AC=0 ⇒  ⇒ a^2 =((b^2 (b^2 +2oq+q^2 ))/(b^2 −o^2 ))  same for a^2 c_2 −ell ⇒  ⇒ a^2 =((b^2 (b^2 −2pq+q^2 ))/(b^2 −p^2 ))  ((b^2 (b^2 +2oq+q^2 ))/(b^2 −o^2 ))=((b^2 (b^2 −2pq+q^2 ))/(b^2 −p^2 )) ∧ b≠0 ⇒  ⇒ b^2 =((q(2op+q(p−o)))/(2q−(p−o)))  ⇒ a^2 =((2q^2 (2op+q(p−o)))/((p−o)(2q−(p−o))))  we now need the minimum of f(q)=ab  f(q)=(((2op+q(p−o))(√(2q^3 )))/((2q−(p−o))(√(p−o))))  f′(q)=(√q)×((6q^2 (p−o)+(14op−5(o^2 +p^2 ))q−6op(p−o))/((2q−(p−o))(√(2(p−o)))))  f′(q)=0 ∧ q≠0 ⇒  ⇒ q=((5o^2 −14op+5p^2 )/(12(p−o)))±(((o+p)(√(25o^2 −46op+25p^2 )))/(12(p−o)))  trying with o=1 and p>1 ⇒ we need the  solution with the +  so we have  a^2 =((2q^2 (2op+q(p−o)))/((p−o)(2q−(p−o))))  b^2 =((q(2op+q(p−o)))/(2q−(p−o)))  q=((5o^2 −14op+5p^2 )/(12(p−o)))+(((o+p)(√(25o^2 −46op+25p^2 )))/(12(p−o)))

circle1c1:(x+o)2+y2o2=0circle2c2:(xp)2+y2p2=0let0<o<pellipseell:b2(xq)2+a2y2a2b2=00<o<pq>0c1ell={P1,P2}={(xy),(x+y)}a2c1ell:(a2b2)x2+2(a2o+b2q)x+b2(a2q2)=0weneedB24AC=0a2=b2(b2+2oq+q2)b2o2samefora2c2ella2=b2(b22pq+q2)b2p2b2(b2+2oq+q2)b2o2=b2(b22pq+q2)b2p2b0b2=q(2op+q(po))2q(po)a2=2q2(2op+q(po))(po)(2q(po))wenowneedtheminimumoff(q)=abf(q)=(2op+q(po))2q3(2q(po))pof(q)=q×6q2(po)+(14op5(o2+p2))q6op(po)(2q(po))2(po)f(q)=0q0q=5o214op+5p212(po)±(o+p)25o246op+25p212(po)tryingwitho=1andp>1weneedthesolutionwiththe+sowehavea2=2q2(2op+q(po))(po)(2q(po))b2=q(2op+q(po))2q(po)q=5o214op+5p212(po)+(o+p)25o246op+25p212(po)

Commented by MJS last updated on 20/Nov/18

but there′s a minimum value for q depending  on o and p so that the ellipse is touching the  1^(st)  circle: q≥((2o(p−o))/(3o−p)). above formula for q  meets this at o<p≤((3o)/2). p>((3o)/2) ⇒ smallest  ellipse with q=((2o(p−o))/(3o−p)) which indeed makes  the smaller circle the osculating circle of the  ellipse when p>((3o)/2)

buttheresaminimumvalueforqdependingonoandpsothattheellipseistouchingthe1stcircle:q2o(po)3op.aboveformulaforqmeetsthisato<p3o2.p>3o2smallestellipsewithq=2o(po)3opwhichindeedmakesthesmallercircletheosculatingcircleoftheellipsewhenp>3o2

Commented by ajfour last updated on 20/Nov/18

Thank you for as much, Sir!

Thankyouforasmuch,Sir!

Answered by ajfour last updated on 20/Nov/18

Let point of contact of the two  circles be the origin O.  Eq. of ellipse is_(−)      (((x−h)^2 )/a^2 )+(y^2 /b^2 )=1  For general eq. for both circles_(−)      (x−ρ)^2 +y^2 = ρ^2   For tangency condition, such a  circle and ellipse have one common  root. ⇒ eq. below has double root.    (((x−h)^2 )/a^2 )+((ρ^2 −(x−ρ)^2 )/b^2 ) = 1  or  x^2 ((1/a^2 )−(1/b^2 ))−2x((h/a^2 )−(ρ/b^2 ))+(h^2 /a^2 )−1=0   ⇒ 4((h/a^2 )−(ρ/b^2 ))^2 = 4((1/b^2 )−(1/a^2 ))(1−(h^2 /a^2 ))  ⇒  (ρ^2 /b^4 )−((2ρh)/(a^2 b^2 )) = ((1/b^2 )−(1/a^2 ))−(h^2 /(a^2 b^2 ))  Above eq. in ρ has two roots      ρ = R   and  ρ = −r  ⇒  (R−r)^2 = ((4h^2 b^4 )/a^4 )     &      Rr =b^4 [((1/b^2 )−(1/a^2 ))−(h^2 /(a^2 b^2 ))]  ⇒   h^2  = ((a^4 (R−r)^2 )/(4b^4 ))   and also          h^2  = a^2 −b^2 −((a^2 Rr)/b^2 )  ⇒   ((a^4 (R−r)^2 )/(4b^4 )) = a^2 −b^2 −((a^2 Rr)/b^2 )  ⇒   ((a^2 (R−r)^2 )/4) = b^4 −(b^6 /a^2 )−b^2 Rr  And area of ellipse = πab  let   a^2 b^2  = p  ⇒  a^2  =(p/b^2 )  further let   b^2  = t  ⇒  a^2  = (p/t)     ((p(R−r)^2 )/(4t)) = t^2 −(t^4 /p)−Rrt   ...(I )  For minimum area p is minimum  Therefore   (dp/dt) = 0  ⇒ −((p(R−r)^2 )/(4t^2 )) = 2t−((4t^3 )/p)−Rr  ..(II)  (I)+t×(II)  yields     0 = 3t^2 −((5t^4 )/p)−2Rrt  So     p = ((5t^3 )/(3t−2Rr))      ....(i)  Now   (4/t)×(I)−(II)  gives     ((5p(R−r)^2 )/(4t^2 )) = 2t−3Rr  using (i) in above eq.        ((25t(R−r)^2 )/(4(3t−2Rr)))=2t−3Rr  ⇒   let   z = (t/(Rr)) = (b^2 /(Rr))   , then       ((25z(R−r)^2 )/(4Rr(3z−2))) = 2z−3  Also let  ((5(R−r))/(2(√(Rr))))= c  , then     (3z−2)(2z−3) = c^2 z  ⇒  6z^2 −(c^2 +13)z+6 = 0    z = ((c^2 +13±(√((c^2 +13)^2 −144)))/(12))  ⇒ (b^2 /(Rr)) = ((25)/(48))(((R−r)^2 )/(Rr))+((13)/(12))            ±(√((((25)/(48))(((R−r)^2 )/(Rr))+((13)/(12)))^2 −1))  If   r = R         (b/R) = (√(((13)/(12))±(5/(12))))    but   (b/R) > 1   ⇒  + sign gives  correct result.   b = (√(3/2)) R   And generally    (b^2 /(Rr)) = ((25(R−r)^2 )/(48Rr))+((13)/(12))          +(√((((25(R−r)^2 )/(48Rr))+((13)/(12)))^2 −1))   using this value in          p = ((5t^3 )/(3t−2Rr))   gives      a^2 b^2  = ((5b^6 )/(3b^2 −2Rr))   ⇒    (a^2 /(Rr)) = ((5((b^2 /(Rr)))^2 )/(3((b^2 /(Rr)))−2))    As a special case  for  r = R          b = ((√3)/(√2)) R   ;    ⇒   (a^2 /R^2 ) =((5((9/4)))/(3((3/2))−2)) = (9/2)    ⇒   a = (3/(√2))R ,  b = ((√3)/(√2))R   _________________________.

LetpointofcontactofthetwocirclesbetheoriginO.Eq.ofellipseis(xh)2a2+y2b2=1Forgeneraleq.forbothcircles(xρ)2+y2=ρ2Fortangencycondition,suchacircleandellipsehaveonecommonroot.eq.belowhasdoubleroot.(xh)2a2+ρ2(xρ)2b2=1orx2(1a21b2)2x(ha2ρb2)+h2a21=04(ha2ρb2)2=4(1b21a2)(1h2a2)ρ2b42ρha2b2=(1b21a2)h2a2b2Aboveeq.inρhastworootsρ=Randρ=r(Rr)2=4h2b4a4&Rr=b4[(1b21a2)h2a2b2]h2=a4(Rr)24b4andalsoh2=a2b2a2Rrb2a4(Rr)24b4=a2b2a2Rrb2a2(Rr)24=b4b6a2b2RrAndareaofellipse=πableta2b2=pa2=pb2furtherletb2=ta2=ptp(Rr)24t=t2t4pRrt...(I)ForminimumareapisminimumThereforedpdt=0p(Rr)24t2=2t4t3pRr..(II)(I)+t×(II)yields0=3t25t4p2RrtSop=5t33t2Rr....(i)Now4t×(I)(II)gives5p(Rr)24t2=2t3Rrusing(i)inaboveeq.25t(Rr)24(3t2Rr)=2t3Rrletz=tRr=b2Rr,then25z(Rr)24Rr(3z2)=2z3Alsolet5(Rr)2Rr=c,then(3z2)(2z3)=c2z6z2(c2+13)z+6=0z=c2+13±(c2+13)214412b2Rr=2548(Rr)2Rr+1312±(2548(Rr)2Rr+1312)21Ifr=RbR=1312±512butbR>1+signgivescorrectresult.b=32RAndgenerallyb2Rr=25(Rr)248Rr+1312+(25(Rr)248Rr+1312)21usingthisvalueinp=5t33t2Rrgivesa2b2=5b63b22Rra2Rr=5(b2Rr)23(b2Rr)2Asaspecialcaseforr=Rb=32R;a2R2=5(94)3(32)2=92a=32R,b=32R_________________________.

Commented by MJS last updated on 20/Nov/18

my solution includes the same issue.  before trying to find the minimum of ab we  have q as parameter. obviously there are  borders for q depending on the values of  o and p (r and R)

mysolutionincludesthesameissue.beforetryingtofindtheminimumofabwehaveqasparameter.obviouslytherearebordersforqdependingonthevaluesofoandp(randR)

Commented by mr W last updated on 20/Nov/18

very nice method sir!  but it seems to work only for cases  where R and r are not very different.  For r<R/2 the results seem not to be  correct.  I am showing two cases:  r=6, R=8 and r=3, R=8

verynicemethodsir!butitseemstoworkonlyforcaseswhereRandrarenotverydifferent.Forr<R/2theresultsseemnottobecorrect.Iamshowingtwocases:r=6,R=8andr=3,R=8

Commented by mr W last updated on 20/Nov/18

Commented by mr W last updated on 20/Nov/18

Commented by ajfour last updated on 20/Nov/18

How come the ambiguity, Sir ?  please help....

Howcometheambiguity,Sir?pleasehelp....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com