Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 4812 by sanusihammed last updated on 15/Mar/16

Commented by prakash jain last updated on 16/Mar/16

Isn′t (A−B)^T =A^T −B^T ?

$$\mathrm{Isn}'\mathrm{t}\:\left({A}−{B}\right)^{{T}} ={A}^{{T}} −{B}^{{T}} ? \\ $$

Commented by prakash jain last updated on 15/Mar/16

(A+3 [(1,(−1),0),(1,2,4) ])^T = [(2,1),(0,5),(3,8) ]  (A+3 [(1,(−1),0),(1,2,4) ])^T = [(2,1),(0,5),(3,8) ]  (A+3 [(1,(−1),0),(1,2,4) ])= [(2,1),(0,5),(3,8) ]^T = [(2,0,3),(1,5,8) ]    A= [(2,0,3),(1,5,8) ]−3 [(1,(−1),0),(1,2,4) ]= [((−1),3,3),((−2),(−1),(−4)) ]

$$\left({A}+\mathrm{3}\begin{bmatrix}{\mathrm{1}}&{−\mathrm{1}}&{\mathrm{0}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{4}}\end{bmatrix}\right)^{{T}} =\begin{bmatrix}{\mathrm{2}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{5}}\\{\mathrm{3}}&{\mathrm{8}}\end{bmatrix} \\ $$$$\left({A}+\mathrm{3}\begin{bmatrix}{\mathrm{1}}&{−\mathrm{1}}&{\mathrm{0}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{4}}\end{bmatrix}\right)^{{T}} =\begin{bmatrix}{\mathrm{2}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{5}}\\{\mathrm{3}}&{\mathrm{8}}\end{bmatrix} \\ $$$$\left({A}+\mathrm{3}\begin{bmatrix}{\mathrm{1}}&{−\mathrm{1}}&{\mathrm{0}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{4}}\end{bmatrix}\right)=\begin{bmatrix}{\mathrm{2}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{5}}\\{\mathrm{3}}&{\mathrm{8}}\end{bmatrix}^{{T}} =\begin{bmatrix}{\mathrm{2}}&{\mathrm{0}}&{\mathrm{3}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{8}}\end{bmatrix} \\ $$$$ \\ $$$${A}=\begin{bmatrix}{\mathrm{2}}&{\mathrm{0}}&{\mathrm{3}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{8}}\end{bmatrix}−\mathrm{3}\begin{bmatrix}{\mathrm{1}}&{−\mathrm{1}}&{\mathrm{0}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{4}}\end{bmatrix}=\begin{bmatrix}{−\mathrm{1}}&{\mathrm{3}}&{\mathrm{3}}\\{−\mathrm{2}}&{−\mathrm{1}}&{−\mathrm{4}}\end{bmatrix} \\ $$

Commented by Yozzii last updated on 16/Mar/16

(3A^T +2 ((1,0),(0,2) ))^T = ((8,0),(3,1) )  Matrix addition is only possible between  matrices of equal dimensions so that  addition of corresponding elements  occurs. So in (ii) we could let A be a 2×2   matrix of the form   A= ((a,b),(c,d) ) ⇒A^T = ((a,c),(b,d) )⇒3A^T = (((3a),(3c)),((3b),(3d)) )  ⇒3A^T + ((2,0),(0,4) )= (((3a+2),(3c)),((3b),(3d+4)) )  ∴(3A^T +2 ((1,0),(0,2) ))^T = (((3a+2),(3b)),((3c),(3d+4)) )= ((8,0),(3,1) )  Equating elements we get  a=2,b=0,c=1 and d=−1. Hence A is given by  A= ((2,0),(1,(−1)) ).  Checking: 3A^T = ((6,3),(0,(−3)) )  3A^T + ((2,0),(0,4) )= ((8,3),(0,1) )⇒(3A^T +2 ((1,0),(0,2) ))^T = ((8,0),(3,1) ).  Alternatively you could utilise the  idea of the trasposition  of matrices  to find A by a series of operations   on the original equation. Mr. Jain  has done this in his answer for (i).  (iii)  can be done simply by such   a manipulation.

$$\left(\mathrm{3}{A}^{{T}} +\mathrm{2}\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{2}}\end{pmatrix}\right)^{{T}} =\begin{pmatrix}{\mathrm{8}}&{\mathrm{0}}\\{\mathrm{3}}&{\mathrm{1}}\end{pmatrix} \\ $$$${Matrix}\:{addition}\:{is}\:{only}\:{possible}\:{between} \\ $$$${matrices}\:{of}\:{equal}\:{dimensions}\:{so}\:{that} \\ $$$${addition}\:{of}\:{corresponding}\:{elements} \\ $$$${occurs}.\:{So}\:{in}\:\left({ii}\right)\:{we}\:{could}\:{let}\:{A}\:{be}\:{a}\:\mathrm{2}×\mathrm{2}\: \\ $$$${matrix}\:{of}\:{the}\:{form}\: \\ $$$${A}=\begin{pmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{pmatrix}\:\Rightarrow{A}^{{T}} =\begin{pmatrix}{{a}}&{{c}}\\{{b}}&{{d}}\end{pmatrix}\Rightarrow\mathrm{3}{A}^{{T}} =\begin{pmatrix}{\mathrm{3}{a}}&{\mathrm{3}{c}}\\{\mathrm{3}{b}}&{\mathrm{3}{d}}\end{pmatrix} \\ $$$$\Rightarrow\mathrm{3}{A}^{{T}} +\begin{pmatrix}{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{4}}\end{pmatrix}=\begin{pmatrix}{\mathrm{3}{a}+\mathrm{2}}&{\mathrm{3}{c}}\\{\mathrm{3}{b}}&{\mathrm{3}{d}+\mathrm{4}}\end{pmatrix} \\ $$$$\therefore\left(\mathrm{3}{A}^{{T}} +\mathrm{2}\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{2}}\end{pmatrix}\right)^{{T}} =\begin{pmatrix}{\mathrm{3}{a}+\mathrm{2}}&{\mathrm{3}{b}}\\{\mathrm{3}{c}}&{\mathrm{3}{d}+\mathrm{4}}\end{pmatrix}=\begin{pmatrix}{\mathrm{8}}&{\mathrm{0}}\\{\mathrm{3}}&{\mathrm{1}}\end{pmatrix} \\ $$$${Equating}\:{elements}\:{we}\:{get} \\ $$$${a}=\mathrm{2},{b}=\mathrm{0},{c}=\mathrm{1}\:{and}\:{d}=−\mathrm{1}.\:{Hence}\:{A}\:{is}\:{given}\:{by} \\ $$$${A}=\begin{pmatrix}{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{1}}&{−\mathrm{1}}\end{pmatrix}. \\ $$$${Checking}:\:\mathrm{3}{A}^{{T}} =\begin{pmatrix}{\mathrm{6}}&{\mathrm{3}}\\{\mathrm{0}}&{−\mathrm{3}}\end{pmatrix} \\ $$$$\mathrm{3}{A}^{{T}} +\begin{pmatrix}{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{4}}\end{pmatrix}=\begin{pmatrix}{\mathrm{8}}&{\mathrm{3}}\\{\mathrm{0}}&{\mathrm{1}}\end{pmatrix}\Rightarrow\left(\mathrm{3}{A}^{{T}} +\mathrm{2}\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{2}}\end{pmatrix}\right)^{{T}} =\begin{pmatrix}{\mathrm{8}}&{\mathrm{0}}\\{\mathrm{3}}&{\mathrm{1}}\end{pmatrix}. \\ $$$${Alternatively}\:{you}\:{could}\:{utilise}\:{the} \\ $$$${idea}\:{of}\:{the}\:{trasposition}\:\:{of}\:{matrices} \\ $$$${to}\:{find}\:{A}\:{by}\:{a}\:{series}\:{of}\:{operations}\: \\ $$$${on}\:{the}\:{original}\:{equation}.\:{Mr}.\:{Jain} \\ $$$${has}\:{done}\:{this}\:{in}\:{his}\:{answer}\:{for}\:\left({i}\right). \\ $$$$\left({iii}\right)\:\:{can}\:{be}\:{done}\:{simply}\:{by}\:{such}\: \\ $$$${a}\:{manipulation}. \\ $$

Commented by prakash jain last updated on 16/Mar/16

(2A^T −5 [(1,0),((−1),2) ])^T =4A−9 [(1,1),((−2),0) ]  2A−5 [(1,(−1)),(0,2) ]=4A−9 [(1,1),((−2),0) ]  2A=9 [(1,1),((−2),0) ]−5 [(1,(−1)),(0,2) ]  2A= [(4,(14)),((−18),(−10)) ]  A= [(2,7),((−9),(−5)) ]

$$\left(\mathrm{2}{A}^{{T}} −\mathrm{5}\begin{bmatrix}{\mathrm{1}}&{\mathrm{0}}\\{−\mathrm{1}}&{\mathrm{2}}\end{bmatrix}\right)^{{T}} =\mathrm{4}{A}−\mathrm{9}\begin{bmatrix}{\mathrm{1}}&{\mathrm{1}}\\{−\mathrm{2}}&{\mathrm{0}}\end{bmatrix} \\ $$$$\mathrm{2}{A}−\mathrm{5}\begin{bmatrix}{\mathrm{1}}&{−\mathrm{1}}\\{\mathrm{0}}&{\mathrm{2}}\end{bmatrix}=\mathrm{4}{A}−\mathrm{9}\begin{bmatrix}{\mathrm{1}}&{\mathrm{1}}\\{−\mathrm{2}}&{\mathrm{0}}\end{bmatrix} \\ $$$$\mathrm{2}{A}=\mathrm{9}\begin{bmatrix}{\mathrm{1}}&{\mathrm{1}}\\{−\mathrm{2}}&{\mathrm{0}}\end{bmatrix}−\mathrm{5}\begin{bmatrix}{\mathrm{1}}&{−\mathrm{1}}\\{\mathrm{0}}&{\mathrm{2}}\end{bmatrix} \\ $$$$\mathrm{2}{A}=\begin{bmatrix}{\mathrm{4}}&{\mathrm{14}}\\{−\mathrm{18}}&{−\mathrm{10}}\end{bmatrix} \\ $$$${A}=\begin{bmatrix}{\mathrm{2}}&{\mathrm{7}}\\{−\mathrm{9}}&{−\mathrm{5}}\end{bmatrix} \\ $$

Commented by Yozzii last updated on 16/Mar/16

(2A^T −5 ((1,0),((−1),2) ))^T =4A−9 ((1,1),((−2),0) )                                  lhs=rhs  Let A be a 2×2 matrix of the form                           A= ((a,b),(c,d) ) .  ∴ 2A^T = (((2a),(2c)),((2b),(2d)) )⇒2A^T −5 ((1,0),((−1),2) )= (((2a−5),(2c)),((2b+5),(2d−10)) )  ∴ lhs= (((2a−5),(2b+5)),((2c),(2d−10)) )  rhs= (((4a−9),(4b−9)),((4c+18),(4d)) )  Since lhs=rhs  ⇒2a−5=4a−9⇒a=2  ⇒4c+18=2c⇒c=−9  ⇒4b−9=2b+5⇒b=7  ⇒4d=2d−10⇒d=−5  ∴ A= ((2,7),((−9),(−5)) )  Checking:  2A^T = ((4,(−18)),((14),(−10)) )  (2A^T −5 ((1,0),((−1),2) ))^T = (((−1),(−18)),((19),(−20)) )^T = (((−1),(19)),((−18),(−20)) ) =lhs.  rhs= ((8,(28)),((−36),(−20)) )+ (((−9),(−9)),((18),0) )= (((−1),(19)),((−18),(−20)) )=rhs

$$\left(\mathrm{2}{A}^{{T}} −\mathrm{5}\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}\\{−\mathrm{1}}&{\mathrm{2}}\end{pmatrix}\right)^{{T}} =\mathrm{4}{A}−\mathrm{9}\begin{pmatrix}{\mathrm{1}}&{\mathrm{1}}\\{−\mathrm{2}}&{\mathrm{0}}\end{pmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{lhs}={rhs} \\ $$$${Let}\:{A}\:{be}\:{a}\:\mathrm{2}×\mathrm{2}\:{matrix}\:{of}\:{the}\:{form} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{A}=\begin{pmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{pmatrix}\:. \\ $$$$\therefore\:\mathrm{2}{A}^{{T}} =\begin{pmatrix}{\mathrm{2}{a}}&{\mathrm{2}{c}}\\{\mathrm{2}{b}}&{\mathrm{2}{d}}\end{pmatrix}\Rightarrow\mathrm{2}{A}^{{T}} −\mathrm{5}\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}\\{−\mathrm{1}}&{\mathrm{2}}\end{pmatrix}=\begin{pmatrix}{\mathrm{2}{a}−\mathrm{5}}&{\mathrm{2}{c}}\\{\mathrm{2}{b}+\mathrm{5}}&{\mathrm{2}{d}−\mathrm{10}}\end{pmatrix} \\ $$$$\therefore\:{lhs}=\begin{pmatrix}{\mathrm{2}{a}−\mathrm{5}}&{\mathrm{2}{b}+\mathrm{5}}\\{\mathrm{2}{c}}&{\mathrm{2}{d}−\mathrm{10}}\end{pmatrix} \\ $$$${rhs}=\begin{pmatrix}{\mathrm{4}{a}−\mathrm{9}}&{\mathrm{4}{b}−\mathrm{9}}\\{\mathrm{4}{c}+\mathrm{18}}&{\mathrm{4}{d}}\end{pmatrix} \\ $$$${Since}\:{lhs}={rhs} \\ $$$$\Rightarrow\mathrm{2}{a}−\mathrm{5}=\mathrm{4}{a}−\mathrm{9}\Rightarrow{a}=\mathrm{2} \\ $$$$\Rightarrow\mathrm{4}{c}+\mathrm{18}=\mathrm{2}{c}\Rightarrow{c}=−\mathrm{9} \\ $$$$\Rightarrow\mathrm{4}{b}−\mathrm{9}=\mathrm{2}{b}+\mathrm{5}\Rightarrow{b}=\mathrm{7} \\ $$$$\Rightarrow\mathrm{4}{d}=\mathrm{2}{d}−\mathrm{10}\Rightarrow{d}=−\mathrm{5} \\ $$$$\therefore\:{A}=\begin{pmatrix}{\mathrm{2}}&{\mathrm{7}}\\{−\mathrm{9}}&{−\mathrm{5}}\end{pmatrix} \\ $$$${Checking}: \\ $$$$\mathrm{2}{A}^{{T}} =\begin{pmatrix}{\mathrm{4}}&{−\mathrm{18}}\\{\mathrm{14}}&{−\mathrm{10}}\end{pmatrix} \\ $$$$\left(\mathrm{2}{A}^{{T}} −\mathrm{5}\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}\\{−\mathrm{1}}&{\mathrm{2}}\end{pmatrix}\right)^{{T}} =\begin{pmatrix}{−\mathrm{1}}&{−\mathrm{18}}\\{\mathrm{19}}&{−\mathrm{20}}\end{pmatrix}^{{T}} =\begin{pmatrix}{−\mathrm{1}}&{\mathrm{19}}\\{−\mathrm{18}}&{−\mathrm{20}}\end{pmatrix}\:={lhs}. \\ $$$${rhs}=\begin{pmatrix}{\mathrm{8}}&{\mathrm{28}}\\{−\mathrm{36}}&{−\mathrm{20}}\end{pmatrix}+\begin{pmatrix}{−\mathrm{9}}&{−\mathrm{9}}\\{\mathrm{18}}&{\mathrm{0}}\end{pmatrix}=\begin{pmatrix}{−\mathrm{1}}&{\mathrm{19}}\\{−\mathrm{18}}&{−\mathrm{20}}\end{pmatrix}={rhs} \\ $$$$ \\ $$$$ \\ $$

Commented by Yozzii last updated on 16/Mar/16

Didn′t know that (though simple). Thanks!

$${Didn}'{t}\:{know}\:{that}\:\left({though}\:{simple}\right).\:{Thanks}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com