Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 48156 by ajfour last updated on 20/Nov/18

Commented by ajfour last updated on 20/Nov/18

Find R in terms of a.

FindRintermsofa.

Answered by ajfour last updated on 20/Nov/18

Let center of red circle be (R,k)  and center of blue one (h,R)  ⇒   P (((h+R)/2), ((k+R)/2))  P lies on parabola  ⇒    ((k+R)/2) = a(((h+R)/2))^2      ....(i)   y = ax^2   ⇒ −(dx/dy) = ((−1)/(2ax))   at P :      (dx/dy) = (1/(a(h+R)))   ⇒   ((k−R)/(h−R)) = (1/(a(h+R)))      ....(ii)    Also   (h−R)^2 +(k−R)^2 = 4R^2   let    h = R+2Rcos θ            k = R+2Rsin θ  using these in (i)     1+sin θ =aR(1+cos θ)^2    ..(I)  using the same in (ii)    2aR(1+cos θ)sin θ = cos θ  ..(II)  (I)×(II)  gives   2sin θ(1+sin θ) = cos θ(1+cos θ)  let   tan (θ/2) = t , then  (((4t)/(1+t^2 )))(1+((2t)/(1+t^2 )))=(((1−t^2 )/(1+t^2 )))(1+((1−t^2 )/(1+t^2 )))  ⇒  2t(1+t)^2  = 1−t^2   ⇒   t = −1 (i dont think acceptable)  or      2t(1+t) = 1−t  ⇒       2t^2 +3t−1 = 0              t = ((−3±(√(9+8)))/4)   taking  t = (((√(17))−3)/4)  And from (II)      2aR = (1/(tan θ(1+cos θ)))               = ((1−t^2 )/(2t(1+((1−t^2 )/(1+t^2 ))))) = ((1−t^4 )/(4t))     2aR  = ((1−(((1−3t)/2))^2 )/(4t))                = ((4−1−9t^2 +6t)/(16t))                = ((3+6t−9(((1−3t)/2)))/(16t))               = ((6+12t−9+27t)/(32t))               = ((39t−3)/(32t)) = ((39)/(32))−(3/(32t))              = ((39)/(32))−((3×4)/(32((√(17))−3)))              = ((39)/(32))−((12((√(17))+3))/(32×8))      2aR = ((78−3(√(17))−9)/(64))  or     R = ((3(23−(√(17))))/(128a)) .

Letcenterofredcirclebe(R,k)andcenterofblueone(h,R)P(h+R2,k+R2)Pliesonparabolak+R2=a(h+R2)2....(i)y=ax2dxdy=12axatP:dxdy=1a(h+R)kRhR=1a(h+R)....(ii)Also(hR)2+(kR)2=4R2leth=R+2Rcosθk=R+2Rsinθusingthesein(i)1+sinθ=aR(1+cosθ)2..(I)usingthesamein(ii)2aR(1+cosθ)sinθ=cosθ..(II)(I)×(II)gives2sinθ(1+sinθ)=cosθ(1+cosθ)lettanθ2=t,then(4t1+t2)(1+2t1+t2)=(1t21+t2)(1+1t21+t2)2t(1+t)2=1t2t=1(idontthinkacceptable)or2t(1+t)=1t2t2+3t1=0t=3±9+84takingt=1734Andfrom(II)2aR=1tanθ(1+cosθ)=1t22t(1+1t21+t2)=1t44t2aR=1(13t2)24t=419t2+6t16t=3+6t9(13t2)16t=6+12t9+27t32t=39t332t=3932332t=39323×432(173)=393212(17+3)32×82aR=78317964orR=3(2317)128a.

Commented by ajfour last updated on 20/Nov/18

Any error in this solution Sir?

AnyerrorinthissolutionSir?

Commented by mr W last updated on 20/Nov/18

all correct sir!

allcorrectsir!

Answered by mr W last updated on 20/Nov/18

P(h,k)  k=ah^2   tan θ=2ah  eqn. of tangent:  y=2ah(x−h)+ah^2   x=0: y=−ah^2   y=0: x=h/2  l=(h/(2 cos θ))  ϕ=π/2−θ  R=l tan (θ/2)  R=2l tan (ϕ/2)=2l tan (π/4−θ/2)  ⇒tan (θ/2)=2 tan (π/4−θ/2)=((2(1−tan θ/2))/(1+tan θ/2))  with t=tan (θ/2)  t+t^2 =2−2t  t^2 +3t−2=0  ⇒t=(((√(17))−3)/2)  al=((ah)/(2 cos θ))=((tan θ)/(4 cos θ))  aR=al tan (θ/2)=((tan θ tan (θ/2))/(4 cos θ))=((t^2 (1+t^2 ))/(2(1−t^2 )^2 ))

P(h,k)k=ah2tanθ=2aheqn.oftangent:y=2ah(xh)+ah2x=0:y=ah2y=0:x=h/2l=h2cosθφ=π/2θR=ltan(θ/2)R=2ltan(φ/2)=2ltan(π/4θ/2)tan(θ/2)=2tan(π/4θ/2)=2(1tanθ/2)1+tanθ/2witht=tan(θ/2)t+t2=22tt2+3t2=0t=1732al=ah2cosθ=tanθ4cosθaR=altanθ2=tanθtanθ24cosθ=t2(1+t2)2(1t2)2

Commented by ajfour last updated on 20/Nov/18

Its okay Sir, thank you.

ItsokaySir,thankyou.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com