Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 48171 by Abdo msup. last updated on 20/Nov/18

calculate ∫_0 ^∞  ((sin(cosx))/(x^2  +3))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}\left({cosx}\right)}{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx} \\ $$

Commented by Abdo msup. last updated on 21/Nov/18

let I =∫_0 ^∞  ((sin(cosx))/(x^2  +3))dx ⇒2I =∫_(−∞) ^(+∞)  ((sin(cosx))/(x^2  +3))dx  =Im(∫_(−∞) ^(+∞)   (e^(icosx) /(x^2  +3))dx) let consider the complexfunction  ϕ(z)=(e^(icosz) /(z^2  +3))  we have ϕ(z)=(e^(icosz) /((z−i(√3))(z+i(√3))))?so the poles  of ϕ are +^− i(√3)   residus theorem?give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i(√3))  Res(ϕ,i(√3)) =lim_(z→i(√3))    (z−i(√3))ϕ(z)  = (e^(icos(i(√3))) /(2i(√3))) but  cos(i(√3))=((e^(i(i(√3))) +e^(−i(i(√3))) )/2) =((e^(−(√3)) +e^(√3) )/2)  =ch((√3)) ⇒Res(ϕ,i(√3))=(e^(ich((√3))) /(2i(√3))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ.(e^(ich((√3))) /(2i(√3))) =(π/(√3)) {cos(ch((√3))+isin(ch((√3)))}⇒  2I =(π/(√3))sin(ch((√3))) ⇒  I =(π/(2(√3))) sin(((e^(√3) +e^(−(√3)) )/2)).

$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}\left({cosx}\right)}{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx}\:\Rightarrow\mathrm{2}{I}\:=\int_{−\infty} ^{+\infty} \:\frac{{sin}\left({cosx}\right)}{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx} \\ $$$$={Im}\left(\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{icosx}} }{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx}\right)\:{let}\:{consider}\:{the}\:{complexfunction} \\ $$$$\varphi\left({z}\right)=\frac{{e}^{{icosz}} }{{z}^{\mathrm{2}} \:+\mathrm{3}}\:\:{we}\:{have}\:\varphi\left({z}\right)=\frac{{e}^{{icosz}} }{\left({z}−{i}\sqrt{\mathrm{3}}\right)\left({z}+{i}\sqrt{\mathrm{3}}\right)}?{so}\:{the}\:{poles} \\ $$$${of}\:\varphi\:{are}\:\overset{−} {+}{i}\sqrt{\mathrm{3}}\:\:\:{residus}\:{theorem}?{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\sqrt{\mathrm{3}}\right) \\ $$$${Res}\left(\varphi,{i}\sqrt{\mathrm{3}}\right)\:={lim}_{{z}\rightarrow{i}\sqrt{\mathrm{3}}} \:\:\:\left({z}−{i}\sqrt{\mathrm{3}}\right)\varphi\left({z}\right) \\ $$$$=\:\frac{{e}^{{icos}\left({i}\sqrt{\mathrm{3}}\right)} }{\mathrm{2}{i}\sqrt{\mathrm{3}}}\:{but}\:\:{cos}\left({i}\sqrt{\mathrm{3}}\right)=\frac{{e}^{{i}\left({i}\sqrt{\mathrm{3}}\right)} +{e}^{−{i}\left({i}\sqrt{\mathrm{3}}\right)} }{\mathrm{2}}\:=\frac{{e}^{−\sqrt{\mathrm{3}}} +{e}^{\sqrt{\mathrm{3}}} }{\mathrm{2}} \\ $$$$={ch}\left(\sqrt{\mathrm{3}}\right)\:\Rightarrow{Res}\left(\varphi,{i}\sqrt{\mathrm{3}}\right)=\frac{{e}^{{ich}\left(\sqrt{\mathrm{3}}\right)} }{\mathrm{2}{i}\sqrt{\mathrm{3}}}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi.\frac{{e}^{{ich}\left(\sqrt{\mathrm{3}}\right)} }{\mathrm{2}{i}\sqrt{\mathrm{3}}}\:=\frac{\pi}{\sqrt{\mathrm{3}}}\:\left\{{cos}\left({ch}\left(\sqrt{\mathrm{3}}\right)+{isin}\left({ch}\left(\sqrt{\mathrm{3}}\right)\right)\right\}\Rightarrow\right. \\ $$$$\mathrm{2}{I}\:=\frac{\pi}{\sqrt{\mathrm{3}}}{sin}\left({ch}\left(\sqrt{\mathrm{3}}\right)\right)\:\Rightarrow \\ $$$${I}\:=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:{sin}\left(\frac{{e}^{\sqrt{\mathrm{3}}} +{e}^{−\sqrt{\mathrm{3}}} }{\mathrm{2}}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com