Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 48172 by Abdo msup. last updated on 20/Nov/18

calculate ∫_0 ^∞  ((sin(2cos(x^2 +1)))/(1+x^2 ))dx

calculate0sin(2cos(x2+1))1+x2dx

Commented by Abdo msup. last updated on 25/Nov/18

let I=∫_0 ^∞   ((sin(2cos(x^2  +1))dx)/(1+x^2 )) we have  2I = ∫_(−∞) ^(+∞)   ((sin(2cos(x^2  +1)))/(1+x^2 ))dx  =Im( ∫_(−∞) ^(+∞)   (e^(2icos(x^(2 ) +1)) /(1+x^2 )))let ϕ(z) =(e^(2i cos(x^2  +1)) /(1+z^2 )) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i) =2iπ (e^(2icos(i^2  +1)) /(2i))  =π e^(2i)  =π {cos(2)+isin(2)} ⇒2I =πsin(2) ⇒  I =(π/2)sin(2) .

letI=0sin(2cos(x2+1))dx1+x2wehave2I=+sin(2cos(x2+1))1+x2dx=Im(+e2icos(x2+1)1+x2)letφ(z)=e2icos(x2+1)1+z2+φ(z)dz=2iπRes(φ,i)=2iπe2icos(i2+1)2i=πe2i=π{cos(2)+isin(2)}2I=πsin(2)I=π2sin(2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com