Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 48173 by Abdo msup. last updated on 20/Nov/18

calculate ∫  ((arctan(x))/(√(1+x^2 )))dx

calculatearctan(x)1+x2dx

Commented by maxmathsup by imad last updated on 26/Nov/18

changement x=tant give  I = ∫ (t/(√(1+tan^2 t))) (1+tan^2 t)dθ  =∫ θt(√(1+tan^2 t))dt =∫  (t/(cost))dt changement tan((t/2))=u give  I = ∫  ((2arctan(u))/((1−u^2 )/(1+u^2 ))) ((2du)/(1+u^2 )) =4 ∫   ((arctan(u))/(1−u^2 )) du let   f(α)=∫  ((arctan(αu))/(1−u^2 ))du ⇒f^′ (α) =∫  (u/((1−u^2 )(1+α^2 u^2 )))du  =_(αu =x)   ∫   (x/(α(1−(x^2 /α^2 ))(1+x^2 ))) (dx/α) =∫   ((xdx)/((α^2 −x^2 )(1+x^2 ))) let decompose  F(x) =((−x)/((x^2 −α^2 )(x^2  +1))) ⇒F(x)=(a/(x−α)) +(b/(x+α)) +((cx +d)/(x^2  +1)) we have  F(x)=((−x)/((x−α)(x+α)(x^2  +1))) ⇒a=((−α)/(2α(α^2  +1))) =((−1)/(2(α^2  +1)))  b =(α/((−2α)(1+α^2 )))  lim_(x→+∞) xF(x) =0 =a+b +c ⇒c=(1/(2(α^2  +1))) +(1/(2(1+α^2 ))) =(1/(1+α^2 ))  F(0) =0 =−(a/α) +(b/α) +d ⇒0 =−a+b +αd =(1/(2(α^2  +1))) −(1/(2(1+α^2 ))) +αd ⇒d=0 ⇒  F(x)= ((−1)/(2(1+α^2 )(x−α))) −(1/(2(1+α^2 )(x+α))) +(1/(1+α^2 )) (x/(1+x^2 )) ⇒  ∫ F(x)dx =−(1/(2(1+α^2 )))ln∣x^2  −α^2 ∣ +(1/(2(1+α^2 )))ln(x^2  +1) +c ⇒  f^′ (α) =−(1/(2(1+α^2 )))ln∣α^2 u^2 −α^2 ∣ +(1/(2(1+α^2 )))ln(α^2 u^2  +1) +c  ⇒  f(α) =(1/2) ∫_. ^α   ((ln∣t^2 u^2 −t^2 ∣)/(1+t^2 ))dt +(1/2) ∫ ((ln(t^2 u^2  +1))/(1+t^2 ))dt +cα +λ  ...be continued...

changementx=tantgiveI=t1+tan2t(1+tan2t)dθ=θt1+tan2tdt=tcostdtchangementtan(t2)=ugiveI=2arctan(u)1u21+u22du1+u2=4arctan(u)1u2duletf(α)=arctan(αu)1u2duf(α)=u(1u2)(1+α2u2)du=αu=xxα(1x2α2)(1+x2)dxα=xdx(α2x2)(1+x2)letdecomposeF(x)=x(x2α2)(x2+1)F(x)=axα+bx+α+cx+dx2+1wehaveF(x)=x(xα)(x+α)(x2+1)a=α2α(α2+1)=12(α2+1)b=α(2α)(1+α2)limx+xF(x)=0=a+b+cc=12(α2+1)+12(1+α2)=11+α2F(0)=0=aα+bα+d0=a+b+αd=12(α2+1)12(1+α2)+αdd=0F(x)=12(1+α2)(xα)12(1+α2)(x+α)+11+α2x1+x2F(x)dx=12(1+α2)lnx2α2+12(1+α2)ln(x2+1)+cf(α)=12(1+α2)lnα2u2α2+12(1+α2)ln(α2u2+1)+cf(α)=12.αlnt2u2t21+t2dt+12ln(t2u2+1)1+t2dt+cα+λ...becontinued...

Commented by maxmathsup by imad last updated on 26/Nov/18

let find I at form of serie we have I =∫  (t/(cost))dt  I =∫  (t/((e^(it)  +e^(−it) )/2)) dt =∫  ((2t)/(e^(it)  +e^(−it) )) dt = ∫ ((2t e^(−it) )/(1+e^(−2it) )) dt  =2 ∫   t e^(−it)  (Σ_(n=0) ^∞ (−1)^n  e^(−2int) )dt= 2Σ_(n=0) ^∞  (−1)^n  ∫ t e^(−(2n+1)it) dt  =2 Σ_(n=0) ^∞  (−1)^n  A_n    by parts A_n =−(1/((2n+1)i)) t e^(−(2n+1)it)  −∫ −(1/((2n+1)i)) e^(−(2n+1)it) dt  =((it)/(2n+1)) e^(−(2n+1)it)  −(i/(2n+1)) (−(1/((2n+1)i))) e^(−(2n+1)it)   =((it)/(2n+1)) e^(−(2n+1)it)  +(1/((2n+1)^2 )) e^(−(2n+1)it)  ⇒  Σ_(n=0) ^∞  A_n =it Σ_(n=0) ^∞    (e^(−(2n+1)it) /(2n+1)) +Σ_(n=0) ^∞   (e^(−(2n+1)it) /((2n+1)^2 )) ....be continued...

letfindIatformofseriewehaveI=tcostdtI=teit+eit2dt=2teit+eitdt=2teit1+e2itdt=2teit(n=0(1)ne2int)dt=2n=0(1)nte(2n+1)itdt=2n=0(1)nAnbypartsAn=1(2n+1)ite(2n+1)it1(2n+1)ie(2n+1)itdt=it2n+1e(2n+1)iti2n+1(1(2n+1)i)e(2n+1)it=it2n+1e(2n+1)it+1(2n+1)2e(2n+1)itn=0An=itn=0e(2n+1)it2n+1+n=0e(2n+1)it(2n+1)2....becontinued...

Answered by Abdulhafeez Abu qatada last updated on 21/Nov/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com