Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 48182 by cesar.marval.larez@gmail.com last updated on 20/Nov/18

Answered by tanmay.chaudhury50@gmail.com last updated on 20/Nov/18

1)t=((x^m y^n )/((x+y)^(m+n) ))  lnt=mlnx+nlny−(m+n)ln(x+y)  (1/t)(dt/dx)=(m/x)+(n/y)×(dy/dx)−((m+n)/(x+y))(1+(dy/dx))  (1/t)×(dt/dx)=(m/x)−((m+n)/(x+y))+(dy/dx)((n/y)−((m+n)/(x+y)))  (dt/dx).=t[((mx+my−mx−nx)/(x(x+y)))+(dy/dx)(((nx+ny−my−ny)/(y(x+y)))]    =((x^m y^n )/((x+y)^(m+n) ))[((my−nx)/(x(x+y)))−(dy/dx)(((my−nx)/(y(x+y)))]  =((x^m y^n )/((x+y)^(m+n) ))×((my−nx)/(x+y))[(1/x)−(dy/dx)×(1/y)]  2)t=(√(((3x+1)^4 ×(4x+1)^5 )/((x^2 +x+1)^3 )))   lnt=(1/2)×[4ln(3x+1)+5ln(4x+1)−3ln(x^2 +x+1)]  (1/t)×(dt/dx)=(1/2)[(4/(3x+1))×3+(5/(4x+1))×4−(3/(x^2 +x+1))×(2x+1)]  (dt/dx)=(√(((3x+1)^4 ×(4x+1)^5 )/((x^2 +x+1)^3  ))) ×(1/2)[((12)/(3x+1))+((20)/(4x+1))−((3(2x+1))/((x^2 +x+1)^ ))]

1)t=xmyn(x+y)m+nlnt=mlnx+nlny(m+n)ln(x+y)1tdtdx=mx+ny×dydxm+nx+y(1+dydx)1t×dtdx=mxm+nx+y+dydx(nym+nx+y)dtdx.=t[mx+mymxnxx(x+y)+dydx(nx+nymynyy(x+y)]=xmyn(x+y)m+n[mynxx(x+y)dydx(mynxy(x+y)]=xmyn(x+y)m+n×mynxx+y[1xdydx×1y]2)t=(3x+1)4×(4x+1)5(x2+x+1)3lnt=12×[4ln(3x+1)+5ln(4x+1)3ln(x2+x+1)]1t×dtdx=12[43x+1×3+54x+1×43x2+x+1×(2x+1)]dtdx=(3x+1)4×(4x+1)5(x2+x+1)3×12[123x+1+204x+13(2x+1)(x2+x+1)]

Commented by cesar.marval.larez@gmail.com last updated on 21/Nov/18

Thank u very much i am learning   more. If i dont know some i post

Thankuverymuchiamlearningmore.Ifidontknowsomeipost

Terms of Service

Privacy Policy

Contact: info@tinkutara.com