Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 48261 by Abdo msup. last updated on 21/Nov/18

let f(x) =∫_(1/2) ^1   (dt/(2+ch(xt)))  1) find a explicit form of f(x)  2) calculate g(x)=∫_(1/2) ^1   ((tsh(xt))/((2+ch(xt))^2 ))dt  3) find the value of ∫_(1/2) ^1    (dt/(2+ch(3t))) and ∫_(1/2) ^1    ((tsh(2t))/((2+ch(2t))^2 ))dt  4) let u_n   =∫_(1/2) ^1   (dt/(2+ch(nt)))  study the convergence of Σu_n   and Σ(u_n /n) .

letf(x)=121dt2+ch(xt)1)findaexplicitformoff(x)2)calculateg(x)=121tsh(xt)(2+ch(xt))2dt3)findthevalueof121dt2+ch(3t)and121tsh(2t)(2+ch(2t))2dt4)letun=121dt2+ch(nt)studytheconvergenceofΣunandΣunn.

Commented by maxmathsup by imad last updated on 22/Nov/18

1) we have for x ≠0f(x)=∫_(1/2) ^1   (dt/(2+ch(xt))) =_(xt=u)   ∫_(x/2) ^x    (du/(x(2+ch(u)))  =(1/x)  ∫_(x/2) ^x    (du/(2+((e^u  +e^(−u) )/2))) =(2/x) ∫_(x/2) ^x     (du/(4 +e^u  +e^(−u) )) =_(e^u =α)  (2/x) ∫_e^(x/2)  ^e^x    (dα/(α(4+α +α^(−1) )))  =(2/x) ∫_e^(x/2)  ^e^x      (dα/(α^2  +4α +1)) =(2/x) ∫_e^(x/2)  ^e^x      (dα/((α+2)^2  −3)) =(2/x) ∫_e^(x/2)  ^e^x    (dα/((α−1)(α+5)))  =(1/(3x)) ∫_e^(x/2)  ^e^x   {(1/(α−1)) −(1/(α+5))}dα = (1/(3x))[ln∣((α−1)/(α+5))∣]_e^(x/2)  ^e^x    =(1/(3x)){ln∣((e^x −1)/(e^x  +5))∣−ln∣((e^(x/2) −1)/(e^(x/2)  +5))∣}

1)wehaveforx0f(x)=121dt2+ch(xt)=xt=ux2xdux(2+ch(u)=1xx2xdu2+eu+eu2=2xx2xdu4+eu+eu=eu=α2xex2exdαα(4+α+α1)=2xex2exdαα2+4α+1=2xex2exdα(α+2)23=2xex2exdα(α1)(α+5)=13xex2ex{1α11α+5}dα=13x[lnα1α+5]ex2ex=13x{lnex1ex+5lnex21ex2+5}

Commented by maxmathsup by imad last updated on 22/Nov/18

2) we have f^′ (x) =∫_(1/2) ^1  (∂/∂x)((dt/(2+ch(xt)))) = ∫_(1/2) ^1 ((−t sh(xt))/((2+ch(xt))^2 ))dt ⇒  ∫_(1/2) ^1   ((tsh(xt))/((2+ch(xt)^2 )))dt =−f^′ (x) but   f^′ (x)=−(1/(3x^2 )){ ln∣((e^x −1)/(e^x  +5))∣−ln∣((e^(x/2) −1)/(e^(x/2)  +5))∣  +(1/(3x)){(e^x /(e^x −1)) −(e^x /(e^x  +5)) −(1/2) (e^(x/2) /e^((x/(2 ))−1) ) +(1/2)(e^(x/2) /(e^(x/2)  +5))} ⇒g(x)=−f^′ (x)

2)wehavef(x)=121x(dt2+ch(xt))=121tsh(xt)(2+ch(xt))2dt121tsh(xt)(2+ch(xt)2)dt=f(x)butf(x)=13x2{lnex1ex+5lnex21ex2+5+13x{exex1exex+512ex2ex21+12ex2ex2+5}g(x)=f(x)

Commented by maxmathsup by imad last updated on 22/Nov/18

3) ∫_(1/2) ^1   (dt/(2+ch(3t))) =f(3)=(1/9){ln∣((e^3 −1)/(e^3  +5))∣−ln∣((e^(3/2) −1)/(e^(3/2)  +5))∣

3)121dt2+ch(3t)=f(3)=19{lne31e3+5lne321e32+5

Commented by maxmathsup by imad last updated on 22/Nov/18

∫_(1/2) ^1   ((tsh(2t))/((2+ch(2t))^2 ))dt =g(2) =−f^′ (2) =(1/(12)){ln∣((e^2 −1)/(e^2  +5))∣−ln∣((e−1)/(e+5))∣}  +(1/6){ (e^2 /(e^2 −1)) −(e^2 /(e^2  +5)) −(1/2) (e/(e−1)) +(1/2) (e/(e+5))}

121tsh(2t)(2+ch(2t))2dt=g(2)=f(2)=112{lne21e2+5lne1e+5}+16{e2e21e2e2+512ee1+12ee+5}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com