Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 48272 by gunawan last updated on 21/Nov/18

z^5 =32  find all root z

z5=32findallrootz

Commented by maxmathsup by imad last updated on 21/Nov/18

let z=r e^(iθ)    so z^5 =32 ⇔r^5  e^(5iθ) =2^5  e^(i2kπ)  ⇔r=2 and 5θ =2kπ ⇒  θ_k =((2kπ)/5)  so the roots are z_k =2 e^(i((2kπ)/5))   and k∈[[0,4]]  z_0 =2 ,z_1 =2 e^(i((2π)/5))  ,z_2 =2 e^(i((4π)/5))  , z_3 =2 e^(i((6π)/5))  , z_(4 ) =2 e^(i((8π)/5))  .  z_1 =2(cos(((2π)/5))+isin(((2π)/5))) but cos(((2π)/5))=2cos^2 ((π/5))−1  =2(((1+(√5))/4))^2 −1 =2((6+2(√5))/(16)) −1 =((12+4(√5)−16)/(16)) =((4(√5)−4)/(16)) =(((√5)−1)/4)  sin(((2π)/5))=(√(1−((((√5)−1)/4))^2 ))=(√(1−((6−2(√5))/(16))))=(√((10+2(√5))/(16)))=((√(10+2(√5)))/4) ⇒  z_1 =(((√5)−1)/2) +i((√(10+2(√5)))/2)  z_2 =2 e^(i(π−(π/5))) =−2 e^(−i(π/5)) =−2(cos((π/5))−isin((π/5)))but cos((π/5))=((1+(√5))/4)  sin((π/5))=(√(1−(((1+(√5))/4))^2 ))=(√(1−((6+2(√5))/(16))))=(√((10−2(√5))/(16)))=((√(10−2(√5)))/4) ⇒  z_2 =−((1+(√5))/2) +i((√(10−2(√5)))/2)  z_3 =2 e^(iπ)  e^(i(π/5)) =−2(cos((π/5))+isin((π/5)))  =−((1+(√5))/2) −i((√(10−2(√5)))/2)  z_4 =2 e^(i(2π−((2π)/5))) =2 e^(−i((2π)/5)) =2(cos(((2π)/5))−isin(((2π)/5)))  =(((√5)−1)/2) −i((√(10+(√5)))/2)

letz=reiθsoz5=32r5e5iθ=25ei2kπr=2and5θ=2kπθk=2kπ5sotherootsarezk=2ei2kπ5andk[[0,4]]z0=2,z1=2ei2π5,z2=2ei4π5,z3=2ei6π5,z4=2ei8π5.z1=2(cos(2π5)+isin(2π5))butcos(2π5)=2cos2(π5)1=2(1+54)21=26+25161=12+451616=45416=514sin(2π5)=1(514)2=162516=10+2516=10+254z1=512+i10+252z2=2ei(ππ5)=2eiπ5=2(cos(π5)isin(π5))butcos(π5)=1+54sin(π5)=1(1+54)2=16+2516=102516=10254z2=1+52+i10252z3=2eiπeiπ5=2(cos(π5)+isin(π5))=1+52i10252z4=2ei(2π2π5)=2ei2π5=2(cos(2π5)isin(2π5))=512i10+52

Terms of Service

Privacy Policy

Contact: info@tinkutara.com