Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 48294 by behi83417@gmail.com last updated on 21/Nov/18

Commented by MJS last updated on 22/Nov/18

x^6 +x^5 +x^4 −10x^3 +x^2 +x+1=0  x=tan (t/2)  after some transforming work we get  ((3sin^3  t +sin^2  t −sin t −2)/((1+cos t)^3 ))=0  sin t =y  3y^3 +y^2 −y−2=0  y^3 +(1/3)y^2 −(1/3)y−(2/3)=0  y=z−(1/9)  z^3 −((10)/(27))z−((457)/(729))=0  D=(p^3 /(27))+(q^2 /4)=((281)/(2916))>0 ⇒ 1 real solution  z=((−(q/2)+(√((p^3 /(27))+(q^2 /4)))))^(1/3) +((−(q/2)−(√((p^3 /(27))+(q^2 /4)))))^(1/3)   z=(1/9)((((457+27(√(281)))/2))^(1/3) +(((457−27(√(281)))/2))^(1/3) )  y=(1/9)((((457+27(√(281)))/2))^(1/3) +(((457−27(√(281)))/2))^(1/3) −1)  t=2nπ+arcsin y ∨ t=(2n+1)π−arcsin y ; n∈Z  x=tan ((arcsin y)/2) ∨ x=cot ((arcsin y)/2)  x=(1/y)±((√(1−y^2 ))/y)  ...so we have exact solutions of an unpleasant shape  x_1 ≈.608053  x_2 ≈1.64459

x6+x5+x410x3+x2+x+1=0x=tant2aftersometransformingworkweget3sin3t+sin2tsint2(1+cost)3=0sint=y3y3+y2y2=0y3+13y213y23=0y=z19z31027z457729=0D=p327+q24=2812916>01realsolutionz=q2+p327+q243+q2p327+q243z=19(457+2728123+4572728123)y=19(457+2728123+45727281231)t=2nπ+arcsinyt=(2n+1)πarcsiny;nZx=tanarcsiny2x=cotarcsiny2x=1y±1y2y...sowehaveexactsolutionsofanunpleasantshapex1.608053x21.64459

Commented by MJS last updated on 22/Nov/18

(x−(1/y)+((√(1−y^2 ))/y))(x−(1/y)−((√(1−y^2 ))/y))=x^2 −(2/y)+1  ((x^6 +x^5 +x^4 −10x^3 +x^2 +x+1)/(x^2 −(2/y)+1))=  =x^4 +(1+(2/y))x^3 +((2/y)+(4/y^2 ))x^2 −(11+(2/y)−(4/y^2 )−(8/y^3 ))x+(1−((24)/y)−(8/y^2 )+(8/y^3 )+((16)/y^4 ))+F  F=((4((y^2 −4)x+2y))/(y^5 (x^2 −(2/y)+1)))(3y^2 +y^2 −y−2)  and since F=0 we get the same solution as  above. not sure which method is more comfortable

(x1y+1y2y)(x1y1y2y)=x22y+1x6+x5+x410x3+x2+x+1x22y+1==x4+(1+2y)x3+(2y+4y2)x2(11+2y4y28y3)x+(124y8y2+8y3+16y4)+FF=4((y24)x+2y)y5(x22y+1)(3y2+y2y2)andsinceF=0wegetthesamesolutionasabove.notsurewhichmethodismorecomfortable

Commented by behi83417@gmail.com last updated on 22/Nov/18

thank you so much dear MJS,Ajfour  and sir tanmay.

thankyousomuchdearMJS,Ajfourandsirtanmay.

Answered by ajfour last updated on 22/Nov/18

let  (1/x) = t  ⇒   (1+t)((1/t)+t)((1/t^2 )+t)=12  or    (t+1)(t^2 +1)(t^3 +1)=12t^3   ⇒  if α is a root, then (1/α) is also  a root.  ⇒   Π(x−α)(x−(1/α))=0  or     Π[x^2 −(α+(1/α))x+1]=0  let α+(1/α) = p , β+(1/β) = q , γ+(1/γ)=r          Π(x^2 −px+1)=0  x^6 −(p+q+r)x^5 +(3+pq+qr+rp)x^4         −(p+q+r+pqr)x^3   +(3+pq+qr+rp)x^2 −(p+q+r)x         +1 = 0  given eq. (x+1)(x^2 +1)(x^3 +1)=12x^3   ⇒  x^6 +x^5 +x^4 −10x^3 +x^2 +x+1=0  ⇒  p+q+r = −1         pq+qr+rp = −2         pqr = 11  p,q,r are then roots of           t^3 +t^2 −2t−11=0  should be  t^3 +t^2 −2t−12 = 0  _________________________        BUT  HOW ?  _________________________    t=p ≈ 2.19479   (only one real root).  ⇒   α+(1/α) = p      α^2 −pα+1 = 0        some error  ...

let1x=t(1+t)(1t+t)(1t2+t)=12or(t+1)(t2+1)(t3+1)=12t3ifαisaroot,then1αisalsoaroot.Π(xα)(x1α)=0orΠ[x2(α+1α)x+1]=0letα+1α=p,β+1β=q,γ+1γ=rΠ(x2px+1)=0x6(p+q+r)x5+(3+pq+qr+rp)x4(p+q+r+pqr)x3+(3+pq+qr+rp)x2(p+q+r)x+1=0giveneq.(x+1)(x2+1)(x3+1)=12x3x6+x5+x410x3+x2+x+1=0p+q+r=1pq+qr+rp=2pqr=11p,q,rarethenrootsoft3+t22t11=0shouldbet3+t22t12=0_________________________BUTHOW?_________________________t=p2.19479(onlyonerealroot).α+1α=pα2pα+1=0someerror...

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Nov/18

x^6 +x^5 +x^4 −10x^3 +x^2 +x+1=0  x^3 +x^2 +x−10+(1/x)+(1/x^2 )+(1/x^3 )=0  (x^3 +(1/x^3 ))+(x^2 +(1/x^2 ))+(x+(1/x))−10=0  t=x+(1/x)  t^3 −3t+t^2 −2+t−10=0  t^3 +t^2 −2t−12=0  f(t)=t^3 +t^2 −2t−12  f(0)<0  f(1)<0  f(2)<0  but f(3)>0  so one root of eqn t^3 +t^2 −2t−12=0  lies in between 2 and 3  now calculating value of f(2.2) and f(2.3) using  calculus  f(t)=t^3 +t^2 −2t−12  f(2)=−4  (df/dt)=((△f)/(△t))=3t^2 +2t−2  so (df/dt)=14  at t=2  ((△f)/(△t))=(df/dt)  △f=(df/dt)△t=14×0.2=2.8  so f(2.2)=−4+2.8=−1.2  f(2.3)=−4+4.2=0.2  f(2.2)<0   but f(2.3)>0  so one root of eqn t^3 +t^2 −2t−12=0  lies between 2.2 and 2.3  so let 2.3 >α>2.2 is solution of t^3 +t^2 −2t−12=0    x+(1/x)=α  x^2 −αx+1=0  x=((α±(√(α^2 −4)))/2)  we can find α using approxmiatation ....

x6+x5+x410x3+x2+x+1=0x3+x2+x10+1x+1x2+1x3=0(x3+1x3)+(x2+1x2)+(x+1x)10=0t=x+1xt33t+t22+t10=0t3+t22t12=0f(t)=t3+t22t12f(0)<0f(1)<0f(2)<0butf(3)>0soonerootofeqnt3+t22t12=0liesinbetween2and3nowcalculatingvalueoff(2.2)andf(2.3)usingcalculusf(t)=t3+t22t12f(2)=4dfdt=ft=3t2+2t2sodfdt=14att=2ft=dfdtf=dfdtt=14×0.2=2.8sof(2.2)=4+2.8=1.2f(2.3)=4+4.2=0.2f(2.2)<0butf(2.3)>0soonerootofeqnt3+t22t12=0liesbetween2.2and2.3solet2.3>α>2.2issolutionoft3+t22t12=0x+1x=αx2αx+1=0x=α±α242wecanfindαusingapproxmiatation....

Commented by behi83417@gmail.com last updated on 22/Nov/18

t^3 +t^2 −2t−12=0  som try shows that t=2.25 is an answer.  x+(1/x)=2.25⇒x^2 −2.25x+1=0  x=((2.25±(√(2.25^2 −4)))/2)=((2.25±1.032)/2)=  ⇒x=1.64,x=0.61 .

t3+t22t12=0somtryshowsthatt=2.25isananswer.x+1x=2.25x22.25x+1=0x=2.25±2.25242=2.25±1.0322=x=1.64,x=0.61.

Commented by tanmay.chaudhury50@gmail.com last updated on 22/Nov/18

thank you sir..

thankyousir..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com