Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 48434 by behi83417@gmail.com last updated on 23/Nov/18

Answered by tanmay.chaudhury50@gmail.com last updated on 23/Nov/18

tanx=t  t(2+(√3) ×((3t−t^3 )/(1−3t^2 )))=((3t−t^3 )/(1−3t^2 ))  2+(√3) ×((3t−t^3 )/(1−3t^2 ))=((3−t^2 )/(1−3t^2 ))  (t≠0)  ((3(√3) t−(√3)t^3 )/(1−3t^2 ))=((3−t^2 )/(1−3t^2 ))−2  3(√3) t−(√3) t^3 =3−t^2 −2+6t^2   −(√3) t^3 −5t^2 +3(√3) t−1=0  (√3) t^3 +5t^2 −3(√3) t+1=0  solving ....  1)(√3) t(t^2 −3)+5t^2   should be equals to −1  2)5t^2  is+ve so (√3) t(t^2 −3)<0   to make (√3) t(t^2 −3)+5t^2   −ve and equalsf to (−1)  3)critical value of (√(3 )) t(t^2 −3) are  0,−(√3) and +(√3)   f(t)= (√3) t(t^2 −3)+5t^2  +1  t≠0   t≠(√3)   t≠−(√3)   f(0)>0   +ve  f(1)>0 +ve  f(0.5)<0  f(0.6)>0  so  0.6 >tanx>0.5  pls check...

tanx=tt(2+3×3tt313t2)=3tt313t22+3×3tt313t2=3t213t2(t0)33t3t313t2=3t213t2233t3t3=3t22+6t23t35t2+33t1=03t3+5t233t+1=0solving....1)3t(t23)+5t2shouldbeequalsto12)5t2is+veso3t(t23)<0tomake3t(t23)+5t2veandequalsfto(1)3)criticalvalueof3t(t23)are0,3and+3f(t)=3t(t23)+5t2+1t0t3t3f(0)>0+vef(1)>0+vef(0.5)<0f(0.6)>0so0.6>tanx>0.5plscheck...

Commented by behi83417@gmail.com last updated on 24/Nov/18

thank you very much sir.

thankyouverymuchsir.

Answered by MJS last updated on 23/Nov/18

x=arctan t  (((√3)t^4 +5t^3 −3(√3)t^2 +t)/(3t^2 −1))=0  ⇒ 3t^2 −1≠0 ⇒ t≠±((√3)/3)  t((√3)t^3 +5t^2 −3(√3)t+1)=0  ⇒ t_1 =0 ⇒ x_1 =0  t^3 +((5(√3))/3)t^2 −3t+((√3)/3)=0  trying t=±((√3)/3) ⇒ t_2 =((√3)/3) but t≠((√3)/3) ⇒ no solution of given eq  t^2 +2(√3)t−1=0  ⇒ t_3 =−2−(√3); t_4 =2−(√3)  ⇒ x_3 =−((5π)/(12)); x_4 =(π/(12))  answer is  (x=zπ∨x=−((5π)/(12))+zπ∨x=(π/(12))+zπ)∧z∈Z

x=arctant3t4+5t333t2+t3t21=03t210t±33t(3t3+5t233t+1)=0t1=0x1=0t3+533t23t+33=0tryingt=±33t2=33butt33nosolutionofgiveneqt2+23t1=0t3=23;t4=23x3=5π12;x4=π12answeris(x=zπx=5π12+zπx=π12+zπ)zZ

Commented by behi83417@gmail.com last updated on 24/Nov/18

thanks in advance sir.

thanksinadvancesir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com