Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 48474 by mondodotto@gmail.com last updated on 24/Nov/18

evaluate ∫_0 ^π sin^2 xdx

evaluate0πsin2xdx

Answered by hassentimol last updated on 24/Nov/18

Commented by hassentimol last updated on 24/Nov/18

I was in degrees...

Iwasindegrees...

Answered by tanmay.chaudhury50@gmail.com last updated on 24/Nov/18

∫_0 ^π ((1−cos2x)/2)dx  =(1/2)∣x−((sin2x)/2)∣_0 ^π   =(1/2)×π  or ∫_0 ^π sin^2 xdx    ∫_0 ^(2a) f(x)dx=2∫_0 ^a f(x)dx when f(x)=f(2a−x)  =2∫_0 ^(π/2) sin^2 xdx  =2×(1/2)∣x−((sin2x)/2)∣_0 ^(π/2)   =2×(1/2)×(π/2)=(π/2)

0π1cos2x2dx=12xsin2x20π=12×πor0πsin2xdx02af(x)dx=20af(x)dxwhenf(x)=f(2ax)=20π2sin2xdx=2×12xsin2x20π2=2×12×π2=π2

Commented by mondodotto@gmail.com last updated on 26/Nov/18

sir it is sin x^(2 )  not sin^2 x

siritissinx2notsin2x

Commented by tanmay.chaudhury50@gmail.com last updated on 26/Nov/18

ok...but in question it is sin^2 x

ok...butinquestionitissin2x

Commented by hassentimol last updated on 26/Nov/18

Well...  sin(x)^2  = (sin(x))^2  = sin^2 (x) by definition

Well...sin(x)2=(sin(x))2=sin2(x)bydefinition

Terms of Service

Privacy Policy

Contact: info@tinkutara.com