Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 48493 by maxmathsup by imad last updated on 24/Nov/18

let S_n =Σ_(k=1) ^n   (k^2 /((2k−1)(2k+1)))  1) determine S_n  interms of n  2) find lim_(n→+∞)  S_n

letSn=k=1nk2(2k1)(2k+1)1)determineSnintermsofn2)findlimn+Sn

Commented by maxmathsup by imad last updated on 25/Nov/18

1) first let decompose F(x)=(x^2 /((2x−1)(2x+1))) ⇒  F(x)=(x/4)((1/(2x−1)) +(1/(2x+1))) =(1/8)(((2x)/(2x−1)) +((2x)/(2x+1)))  =(1/8)(((2x−1+1)/(2x−1)) +((2x+1−1)/(2x+1)))=(1/8)( 1+(1/(2x−1)) +1−(1/(2x+1)))  =(1/4) +(1/8)((1/(2x−1)) −(1/(2x+1))) ⇒S_n =(n/4) +(1/8)Σ_(k=1) ^n  (1/(2k−1)) −(1/8)Σ_(k=1) ^n  (1/(2k+1))  but Σ_(k=1) ^n  (1/(2k+1)) =_(k+1=j)    Σ_(j=2) ^(n+1)   (1/(2j−1)) =Σ_(j=1) ^n  (1/(2j−1)) −1 +(1/(2n+1)) ⇒  S_n =(n/4) +(1/8) Σ_(k=1) ^n  (1/(2k−1)) −(1/8)( Σ_(k=1) ^n  (1/(2k−1)) −1+(1/(2n+1)))  =(n/4) +(1/8) −(1/(8(2n+1)))  2) its clear that lim_(n→+∞)  S_n =+∞ .

1)firstletdecomposeF(x)=x2(2x1)(2x+1)F(x)=x4(12x1+12x+1)=18(2x2x1+2x2x+1)=18(2x1+12x1+2x+112x+1)=18(1+12x1+112x+1)=14+18(12x112x+1)Sn=n4+18k=1n12k118k=1n12k+1butk=1n12k+1=k+1=jj=2n+112j1=j=1n12j11+12n+1Sn=n4+18k=1n12k118(k=1n12k11+12n+1)=n4+1818(2n+1)2)itsclearthatlimn+Sn=+.

Answered by tanmay.chaudhury50@gmail.com last updated on 24/Nov/18

1)(k^2 /((2k+1)(2k−1)))  =(1/4)[((4k^2 −1+1)/((2k+1)(2k−1)))]  =(1/4)[1+(1/2)×(((2k+1)−(2k−1))/((2k+1)(2k−1))]  T_k =(1/4)+(1/8)[(1/(2k−1))−(1/(2k+1))]  T_1 =(1/4)+(1/8)[(1/1)−(1/3)]  T_2 =(1/4)+(1/8)[(1/3)−(1/5)]  T_3 =(1/4)+(1/8)[(1/5)−(1/7)]  ...  ...  T_n =(1/4)+(1/8)[(1/(2n−1))−(1/(2n+1))]  add them  S_n .=(n/4)+(1/8)[1−(1/(2n+1))]  when n→∞    S_n =∞+(1/8)[1−0]=∞  plscheck...

1)k2(2k+1)(2k1)=14[4k21+1(2k+1)(2k1)]=14[1+12×(2k+1)(2k1)(2k+1)(2k1]Tk=14+18[12k112k+1]T1=14+18[1113]T2=14+18[1315]T3=14+18[1517]......Tn=14+18[12n112n+1]addthemSn.=n4+18[112n+1]whennSn=+18[10]=plscheck...

Commented by maxmathsup by imad last updated on 25/Nov/18

correct answer thanks.

correctanswerthanks.

Answered by ajfour last updated on 25/Nov/18

 S_n = Σ_(k=1) ^n (k^2 /((2k−1)(2k+1)))        = (1/4)Σ ((k[(2k+1)+(2k−1)])/((2k−1)(2k+1)))     4S_n  = Σ(k/(2k−1))+Σ(k/(2k+1))  8S_n  = Σ(1+(1/(2k−1)))+Σ(1−(1/(2k+1)))         = 2n+((1/1)+(1/3)+..+(1/(2n−1)))                   −((1/3)+(1/5)+...+(1/(2n+1)))          S_n  = (n/4)+(1/8)(1−(1/(2n+1))) .

Sn=nk=1k2(2k1)(2k+1)=14Σk[(2k+1)+(2k1)](2k1)(2k+1)4Sn=Σk2k1+Σk2k+18Sn=Σ(1+12k1)+Σ(112k+1)=2n+(11+13+..+12n1)(13+15+...+12n+1)Sn=n4+18(112n+1).

Commented by maxmathsup by imad last updated on 25/Nov/18

correct answer thanks

correctanswerthanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com