Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 48494 by maxmathsup by imad last updated on 24/Nov/18

find A_n =∫_0 ^(π/2)  ((1−cos(n+1)x)/(2sin((x/2))))dx .

findAn=0π21cos(n+1)x2sin(x2)dx.

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Nov/18

A_n −A_(n−1) =∫_0 ^(π/2) ((cos(n)x−cos(n+1)x)/(2sin((x/2))))dx  =∫_0 ^(π/2) ((2sin(2n+1)(x/2).sin((x/2)))/(2sin((x/2))))dx  =∫_0 ^(π/2) sin(2n+1)(x/2)dx  =(((−1)/(2n+1)))∣cos(2n+1)(x/2)∣_0 ^(π/2)   =(((−1)/(2n+1))){cos(2n+1)(π/4)−1}  =(1/(2n+1)){1−cos(n(π/2)+(π/4))}    if n=even  =(1/(2n+1))(1+(1/(√2))) or (1/(2n+1))(1−(1/(√2)))  if n odd  =(1/(2n+1))(1+(1/(√2)))  or (1/(2n+1))(1−(1/(√2)))  now considering  A_n −A_(n−1) =(1/(2n+1))(1+(1/(√2)))  pls wait....

AnAn1=0π2cos(n)xcos(n+1)x2sin(x2)dx=0π22sin(2n+1)x2.sin(x2)2sin(x2)dx=0π2sin(2n+1)x2dx=(12n+1)cos(2n+1)x20π2=(12n+1){cos(2n+1)π41}=12n+1{1cos(nπ2+π4)}ifn=even=12n+1(1+12)or12n+1(112)ifnodd=12n+1(1+12)or12n+1(112)nowconsideringAnAn1=12n+1(1+12)plswait....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com