Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 48498 by maxmathsup by imad last updated on 24/Nov/18

find A_n = ∫_0 ^(π/4)  cos^n xdx  and B_n =∫_0 ^(π/4)  sin^n xdx  2) find  ∫_0 ^(π/4)  cos^6 xdx and ∫_0 ^(π/4)  sin^6 xdx .

findAn=0π4cosnxdxandBn=0π4sinnxdx2)find0π4cos6xdxand0π4sin6xdx.

Commented by Abdulhafeez Abu qatada last updated on 24/Nov/18

      i made an error, but its corrected

imadeanerror,butitscorrected

Commented by maxmathsup by imad last updated on 25/Nov/18

1) W_n =∫_0 ^(π/4)  (((e^(ix)  +e^(−ix) )/2))^n dx =(1/2^n ) ∫_0 ^(π/4) (e^(ix)  +e^(−ix) )^n dx  =(1/2^n ) ∫_0 ^(π/4) (Σ_(k=0) ^n  C_n ^k   (e^(ix) )^k  (e^(−ix) )^(n−k) )dx  =(1/2^n ) Σ_(k=0) ^n  C_n ^k  ∫_0 ^(π/4)   e^(ikx)  e^(−i(n−k)x) dx  =(1/2^n ) Σ_(k=0) ^n  C_n ^k  A_k   A_k =∫_0 ^(π/4)  e^((ik−in +ik)x) dx =∫_0 ^(π/4)    e^((2ik−in)x) dx =∫_0 ^(π/4)   e^(i(2k−n)x) dx  =∫_0 ^(π/4)  cos(2k−n)x dx +i ∫_0 ^(π/4)  sin(2k−n)x dx  =[(1/(2k−n))sin(2k−n)x]_0 ^(π/4)  −i [(1/(2k−n)) cos(2k−n)x]_0 ^(π/4)   =(1/(2k−n))sin(2k−n)(π/4)  +i ((1/(2k−n)) −(1/(2k−n)) cos(2k−n)(π/4)) ⇒  W_n =(1/2^n ) Σ_(k=0) ^n  C_n ^k (1/(2k−n)){sin(2k−n)(π/4) +i(1−cos(2k−n)(π/4))}  =(1/2^n ) Σ_(k=0) ^n    C_n ^k   ((sin(2k−n)(π/4))/(2k−n)) +i (1/2^n ) Σ_(k=0) ^n   C_n ^k   ((1−cos(2k−n)(π/4))/(2k−n)) but W_n is real ⇒  (1/2^n ) Σ_(k=0) ^n    ((1−cos(2k−n)(π/4))/(2k−n))  =0 and W_n =(1/2^n ) Σ_(k=0) ^n  C_n ^k   ((sin(2k−n)(π/4))/(2k−n)) .

1)Wn=0π4(eix+eix2)ndx=12n0π4(eix+eix)ndx=12n0π4(k=0nCnk(eix)k(eix)nk)dx=12nk=0nCnk0π4eikxei(nk)xdx=12nk=0nCnkAkAk=0π4e(ikin+ik)xdx=0π4e(2ikin)xdx=0π4ei(2kn)xdx=0π4cos(2kn)xdx+i0π4sin(2kn)xdx=[12knsin(2kn)x]0π4i[12kncos(2kn)x]0π4=12knsin(2kn)π4+i(12kn12kncos(2kn)π4)Wn=12nk=0nCnk12kn{sin(2kn)π4+i(1cos(2kn)π4)}=12nk=0nCnksin(2kn)π42kn+i12nk=0nCnk1cos(2kn)π42knbutWnisreal12nk=0n1cos(2kn)π42kn=0andWn=12nk=0nCnksin(2kn)π42kn.

Commented by maxmathsup by imad last updated on 25/Nov/18

we have B_(n ) =∫_0 ^(π/4)  (((e^(ix) −e^(−ix) )/(2i)))^n dx =(1/((2i)^n )) ∫_0 ^(π/4)  (Σ_(k=0) ^n  C_n ^k  (e^(ix) )^k (−1)^(n−k)  (e^(−ix) )^(n−k) dx  =(1/((2i)^n )) Σ_(k=0) ^n  C_n ^k  (−1)^(n−k)  ∫_0 ^(π/4)  e^(ikx)  e^(−i(n−k)x) dx  =(1/((2i)^n )) Σ_(k=0) ^n   (−1)^(n−k)  C_n ^k   .A_k    with A_k =∫_0 ^(π/4)   e^((ik−in+ik)x) dx  =∫_0 ^(π/4)  e^(i(2k−n)x) dx =∫_0 ^(π/4)  cos(2k−n)x dx +i∫_0 ^(π/4)  sin(2k−n)x dx  =[(1/(2k−n))sin(2k−n)x]_0 ^(π/4)   +i[−(1/(2k−n))cos(2k−n)x]_0 ^(π/4)   =(1/(2k−n))sin(2k−n)(π/4) +(i/(2k−n))( 1−cos(2k−n)(π/4)) ⇒  B_n =(1/((2i)^n )) Σ_(k=0) ^n  (−1)^(n−k)  C_n ^k  (1/(2k−n)){ sin(2k−n)(π/4) +i(1−cos(2k−n)(π/4))}   ⇒B_(2n)  = (1/(2^(2n) (−1)^n )) Σ_(k=0) ^(2n)  (−1)^k  C_(2n) ^k   (1/(2k−2n)){sin(k−n)(π/2) +i(1−cos(k−n)(π/2))}  but B_(2n)   is real ⇒ B_(2n)  =(((−1)^n )/2^(2n+1) ) Σ_(k=0) ^(2n)  (−1)^k  C_(2n) ^k    ((sin(k−n)(π/2))/(k−n))   and we follow the same method to find B_(2n+1)

wehaveBn=0π4(eixeix2i)ndx=1(2i)n0π4(k=0nCnk(eix)k(1)nk(eix)nkdx=1(2i)nk=0nCnk(1)nk0π4eikxei(nk)xdx=1(2i)nk=0n(1)nkCnk.AkwithAk=0π4e(ikin+ik)xdx=0π4ei(2kn)xdx=0π4cos(2kn)xdx+i0π4sin(2kn)xdx=[12knsin(2kn)x]0π4+i[12kncos(2kn)x]0π4=12knsin(2kn)π4+i2kn(1cos(2kn)π4)Bn=1(2i)nk=0n(1)nkCnk12kn{sin(2kn)π4+i(1cos(2kn)π4)}B2n=122n(1)nk=02n(1)kC2nk12k2n{sin(kn)π2+i(1cos(kn)π2)}butB2nisrealB2n=(1)n22n+1k=02n(1)kC2nksin(kn)π2knandwefollowthesamemethodtofindB2n+1

Commented by maxmathsup by imad last updated on 25/Nov/18

2) let I =∫_0 ^(π/4)  cos^6 x dx and J =∫_0 ^(π/4)  sin^6 x dx ⇒  I +J =∫_0 ^(π/4) { (cos^2 x)^(3 )  +(sin^2 x)^3 }dx  =∫_0 ^(π/4) { (cos^2 x+sin^2 x)^3 −3cos^2 x sin^2 x(cos^2 x +sin^2 x)}dx  =∫_0 ^(π/4) {1−3 cos^2 x sin^2 x}dx =∫_0 ^(π/4) {1−(3/4)(1+cos(2x))(1−cos(2x))dx  =(π/4) −(3/4) ∫_0 ^(π/4)  (1−cos^2 (2x))dx  =(π/4) −(3/4).(π/4) +(3/4) ∫_0 ^(π/4)  ((1+cos(4x))/2)dx  =(π/(16))  +(3/8).(π/4) +(3/8) ∫_0 ^(π/4)  cos(4x)dx  =(π/(16)) +((3π)/(32)) +0 =((5π)/(32))  also we have I−J = ∫_0 ^(π/4)  ( (cos^2 x)^3 −(sin^2 x)^3 dx  =∫_0 ^(π/4) (cos^2 x −sin^2 x)(cos^4 x +cos^2 x sin^2 x +sin^4 x)dx  =∫_0 ^(π/4) cos(2x)( (cos^2 x +sin^2 x)^2 −cos^2 x sin^2 x)dx  =∫_0 ^(π/4)  cos(2x)(1−(1/4)sin^2 (2x))dx=∫_0 ^(π/4)  cos(2x)(1−(1/8)(1−cos(4x))dx  =(7/8) ∫_0 ^(π/4)  cos(2x)dx +(1/8) ∫_0 ^(π/4)  cos(2x)cos(4x)dx but   ∫_0 ^(π/4)  cos(2x)dx =[(1/2)sin(2x)]_0 ^(π/4)  =(1/2)  ∫_0 ^(π/4)  cos(2x)cos(4x) dx =(1/2) ∫_0 ^(π/4)  (cos(6x)+cos(2x))dx  =(1/(12))[sin(6x)]_0 ^(π/4)   +(1/4)[sin(2x)]_0 ^(π/4)  =(1/(12))sin(((3π)/2)) +(1/4) =−(1/(12)) +(1/4) =((−1+3)/(12)) =(1/6)  ⇒ I −J =(7/(16)) +(1/(48)) =((22)/(48)) =((11)/(24)) ⇒ I +J =((5π)/(32)) and I −J =((11)/(24)) ⇒  2I =((5π)/(32)) +((11)/(24)) ⇒ I =((5π)/(64)) +((11)/(48)) also  2J =((5π)/(32)) −((11)/(24)) ⇒ J =((5π)/(64)) −((11)/(48)) .  J

2)letI=0π4cos6xdxandJ=0π4sin6xdxI+J=0π4{(cos2x)3+(sin2x)3}dx=0π4{(cos2x+sin2x)33cos2xsin2x(cos2x+sin2x)}dx=0π4{13cos2xsin2x}dx=0π4{134(1+cos(2x))(1cos(2x))dx=π4340π4(1cos2(2x))dx=π434.π4+340π41+cos(4x)2dx=π16+38.π4+380π4cos(4x)dx=π16+3π32+0=5π32alsowehaveIJ=0π4((cos2x)3(sin2x)3dx=0π4(cos2xsin2x)(cos4x+cos2xsin2x+sin4x)dx=0π4cos(2x)((cos2x+sin2x)2cos2xsin2x)dx=0π4cos(2x)(114sin2(2x))dx=0π4cos(2x)(118(1cos(4x))dx=780π4cos(2x)dx+180π4cos(2x)cos(4x)dxbut0π4cos(2x)dx=[12sin(2x)]0π4=120π4cos(2x)cos(4x)dx=120π4(cos(6x)+cos(2x))dx=112[sin(6x)]0π4+14[sin(2x)]0π4=112sin(3π2)+14=112+14=1+312=16IJ=716+148=2248=1124I+J=5π32andIJ=11242I=5π32+1124I=5π64+1148also2J=5π321124J=5π641148.J

Answered by Abdulhafeez Abu qatada last updated on 24/Nov/18

    If I_n  = ∫sin^n x dx, I_n  = ((−cosx.sin^(n−1) x)/n) + ((n−1)/n)I_(n−2)   ∴ B_n  = ∫_0 ^(π/4) sin^n x dx, B_n  = [((−cosx.sin^(n−1) x)/n) + ((n−1)/n)A_(n−2) ]_0 ^(π/4)   B_n  = ((−(((√2)/2))^n )/n) + ((n−1)/n)B_(n−2)      A_n  = [((sinx.cos^(n−1) x)/n) + ((n−1)/n)A_(n−2) ]_0 ^(π/4)   A_n  = (((((√2)/2))^n )/n) + ((n−1)/n)A_(n−2)    A_6  = (((((√2)/2))^6 )/6) + (5/6)A_4    A_6  = (((((√2)/2))^6 )/6) + (5/6)((((((√2)/2))^4 )/4) + (3/4)A_2 )  A_6  = (((((√2)/2))^6 )/6) + (5/6)((((((√2)/2))^4 )/4) ) + (5/6).(3/4)((((((√2)/2))^2 )/2) + (1/2)A_0 )  A_0  = ∫^(π/4) _0  dx = (π/4)  A_6  = (((((√2)/2))^6 )/6) + (5/6)((((((√2)/2))^4 )/4) ) + (5/6).(3/4)((((((√2)/2))^2 )/2) + (π/8))    A_6  =  ((5π)/(64)) + ((11)/(48)).....After simplifying    B_6  = ((−(((√2)/2))^6 )/6) + (5/6)B_4    B_6  = ((−(((√2)/2))^6 )/6) + (5/6)(((−(((√2)/2))^4 )/4) + (3/4)B_2 )  B_6  = ((−(((√2)/2))^6 )/6) + (5/6)(((−(((√2)/2))^4 )/4) ) + (5/6).(3/4)(((−(((√2)/2))^2 )/2) + (1/2)B_0 )    B_0  = ∫^(π/4) _0  dx = (π/4)    B_6  = ((−(((√2)/2))^6 )/6) + (5/6)(((−(((√2)/2))^4 )/4) ) + (5/6).(3/4)(((−(((√2)/2))^2 )/2) + (π/8))    B_6  = ((5π)/(64)) − ((11)/(48))......After simplifying    Abu qatada

IfIn=sinnxdx,In=cosx.sinn1xn+n1nIn2Bn=π40sinnxdx,Bn=[cosx.sinn1xn+n1nAn2]0π4Bn=(22)nn+n1nBn2An=[sinx.cosn1xn+n1nAn2]0π4An=(22)nn+n1nAn2A6=(22)66+56A4A6=(22)66+56((22)44+34A2)A6=(22)66+56((22)44)+56.34((22)22+12A0)A0=0π4dx=π4A6=(22)66+56((22)44)+56.34((22)22+π8)A6=5π64+1148.....AftersimplifyingB6=(22)66+56B4B6=(22)66+56((22)44+34B2)B6=(22)66+56((22)44)+56.34((22)22+12B0)B0=0π4dx=π4B6=(22)66+56((22)44)+56.34((22)22+π8)B6=5π641148......AftersimplifyingAbuqatada

Answered by Abdulhafeez Abu qatada last updated on 24/Nov/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com