Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 48517 by ajfour last updated on 24/Nov/18

Commented by ajfour last updated on 25/Nov/18

Find ratio of maximum triangle  area (with A and B fixed) to  ellipse area.

$${Find}\:{ratio}\:{of}\:{maximum}\:{triangle} \\ $$$${area}\:\left({with}\:{A}\:{and}\:{B}\:{fixed}\right)\:{to} \\ $$$${ellipse}\:{area}. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Nov/18

A(a,0)  B(0,−b)  P(acosθ  ,bsinθ)  area (S)=(1/2)[x_1 (y_2 −y_3 )+x_2 (y_3 −y_1 )+x_3 (y_1 −y_2 )]  =(1/2)[a(−b−bsinθ)+0(bsinθ−0)+acosθ(0+b)]  =(1/2)[−ab−absinθ+abcosθ]  =((−ab)/2)[1+sinθ−cosθ]  =((−ab)/2)[1+(√2) ((1/(√2))sinθ−(1/(√2))cosθ)]  =((−ab)/2)[1+(√2) sin(θ−(π/4))]  max value of sin(θ−(π/4))=1   min value=−1  so S =((−ab)/2)[1+(√2) ] when sin(θ−(π/4))=1  S=((−ab)/2)[1−(√2) ]=((ab)/2)[(√2) −1]  so max area=((ab)/2)[1+(√2) ]  ( ofABP triangle)    rewquired ratio=((((ab)/2)[1+(√2) ])/(πab))=((1+(√2) )/(2π))

$${A}\left({a},\mathrm{0}\right)\:\:{B}\left(\mathrm{0},−{b}\right)\:\:{P}\left({acos}\theta\:\:,{bsin}\theta\right) \\ $$$${area}\:\left({S}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left[{x}_{\mathrm{1}} \left({y}_{\mathrm{2}} −{y}_{\mathrm{3}} \right)+{x}_{\mathrm{2}} \left({y}_{\mathrm{3}} −{y}_{\mathrm{1}} \right)+{x}_{\mathrm{3}} \left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[{a}\left(−{b}−{bsin}\theta\right)+\mathrm{0}\left({bsin}\theta−\mathrm{0}\right)+{acos}\theta\left(\mathrm{0}+{b}\right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[−{ab}−{absin}\theta+{abcos}\theta\right] \\ $$$$=\frac{−{ab}}{\mathrm{2}}\left[\mathrm{1}+{sin}\theta−{cos}\theta\right] \\ $$$$=\frac{−{ab}}{\mathrm{2}}\left[\mathrm{1}+\sqrt{\mathrm{2}}\:\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{sin}\theta−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}{cos}\theta\right)\right] \\ $$$$=\frac{−{ab}}{\mathrm{2}}\left[\mathrm{1}+\sqrt{\mathrm{2}}\:{sin}\left(\theta−\frac{\pi}{\mathrm{4}}\right)\right] \\ $$$${max}\:{value}\:{of}\:{sin}\left(\theta−\frac{\pi}{\mathrm{4}}\right)=\mathrm{1}\:\:\:{min}\:{value}=−\mathrm{1} \\ $$$${so}\:{S}\:=\frac{−{ab}}{\mathrm{2}}\left[\mathrm{1}+\sqrt{\mathrm{2}}\:\right]\:{when}\:{sin}\left(\theta−\frac{\pi}{\mathrm{4}}\right)=\mathrm{1} \\ $$$${S}=\frac{−{ab}}{\mathrm{2}}\left[\mathrm{1}−\sqrt{\mathrm{2}}\:\right]=\frac{{ab}}{\mathrm{2}}\left[\sqrt{\mathrm{2}}\:−\mathrm{1}\right] \\ $$$${so}\:{max}\:{area}=\frac{{ab}}{\mathrm{2}}\left[\mathrm{1}+\sqrt{\mathrm{2}}\:\right]\:\:\left(\:{ofABP}\:{triangle}\right) \\ $$$$ \\ $$$${rewquired}\:{ratio}=\frac{\frac{{ab}}{\mathrm{2}}\left[\mathrm{1}+\sqrt{\mathrm{2}}\:\right]}{\pi{ab}}=\frac{\mathrm{1}+\sqrt{\mathrm{2}}\:}{\mathrm{2}\pi} \\ $$

Commented by ajfour last updated on 25/Nov/18

Thanks Sir, i′d got the same ans.

$${Thanks}\:{Sir},\:{i}'{d}\:{got}\:{the}\:{same}\:{ans}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 25/Nov/18

thank you sir...

$${thank}\:{you}\:{sir}... \\ $$

Answered by ajfour last updated on 25/Nov/18

Area of △APB is maximum  when P is farthest from base  AB.  ⇒  P is contact point of a tangent  to ellipse that is parallel to AB.  let P (h,k).  eq. of ellipse:  (x^2 /a^2 )+(y^2 /b^2 )=1  (dy/dx) = −(b^2 /a^2 )((h/k)) = slope of AB = (b/a)  ⇒ (h/k) = −(a/b)   &  (h^2 /a^2 )(1+(a^2 /b^2 )×(k^2 /h^2 ))=1  ⇒  ((2h^2 )/a^2 ) = 1    ⇒  (h,k)≡ (−(a/(√2)), (b/(√2)))  ⊥ distance of P from line AB is       p = ((∣((−a/(√2))/a)−((b/(√2))/b)−1∣)/(√((1/a^2 )+(1/b^2 )))) = ((((√2)+1)ab)/(√(a^2 +b^2 )))  maximum area of △APB is      △ = (p/2)×(√(a^2 +b^2 )) = ((ab)/2)((√2)+1)  ((max. area of △APB)/(area of ellipse)) = ((((ab)/2)((√2)+1))/(πab))      = (((√2)+1)/(2π)) .

$${Area}\:{of}\:\bigtriangleup{APB}\:{is}\:{maximum} \\ $$$${when}\:{P}\:{is}\:{farthest}\:{from}\:{base} \\ $$$${AB}. \\ $$$$\Rightarrow\:\:{P}\:{is}\:{contact}\:{point}\:{of}\:{a}\:{tangent} \\ $$$${to}\:{ellipse}\:{that}\:{is}\:{parallel}\:{to}\:{AB}. \\ $$$${let}\:{P}\:\left({h},{k}\right). \\ $$$${eq}.\:{of}\:{ellipse}:\:\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{dy}}{{dx}}\:=\:−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\left(\frac{{h}}{{k}}\right)\:=\:{slope}\:{of}\:{AB}\:=\:\frac{{b}}{{a}} \\ $$$$\Rightarrow\:\frac{{h}}{{k}}\:=\:−\frac{{a}}{{b}}\:\:\:\&\:\:\frac{{h}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\left(\mathrm{1}+\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }×\frac{{k}^{\mathrm{2}} }{{h}^{\mathrm{2}} }\right)=\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{\mathrm{2}{h}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:=\:\mathrm{1}\:\: \\ $$$$\Rightarrow\:\:\left({h},{k}\right)\equiv\:\left(−\frac{{a}}{\sqrt{\mathrm{2}}},\:\frac{{b}}{\sqrt{\mathrm{2}}}\right) \\ $$$$\bot\:{distance}\:{of}\:{P}\:{from}\:{line}\:{AB}\:{is} \\ $$$$\:\:\:\:\:{p}\:=\:\frac{\mid\frac{−{a}/\sqrt{\mathrm{2}}}{{a}}−\frac{{b}/\sqrt{\mathrm{2}}}{{b}}−\mathrm{1}\mid}{\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }}}\:=\:\frac{\left(\sqrt{\mathrm{2}}+\mathrm{1}\right){ab}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$${maximum}\:{area}\:{of}\:\bigtriangleup{APB}\:{is} \\ $$$$\:\:\:\:\bigtriangleup\:=\:\frac{{p}}{\mathrm{2}}×\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:=\:\frac{{ab}}{\mathrm{2}}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right) \\ $$$$\frac{{max}.\:{area}\:{of}\:\bigtriangleup{APB}}{{area}\:{of}\:{ellipse}}\:=\:\frac{\frac{{ab}}{\mathrm{2}}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)}{\pi{ab}} \\ $$$$\:\:\:\:=\:\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\mathrm{2}\pi}\:. \\ $$$$ \\ $$

Answered by mr W last updated on 25/Nov/18

let m=(b/a)  eqn. of line // to BA is  y=mx+c  it must tangent the ellipse,  a^2 m^2 +b^2 −c^2 =0  ⇒c=±(√(a^2 m^2 +b^2 ))=±(√2)b  for max. triangle c=(√2)b,  for min. triangle c=−(√2)b    ⊥distance from A to tangent line  d=((∣ma+(√2)b∣)/(√(1+m^2 )))=(((1+(√2))ab)/(√(a^2 +b^2 )))  area of max. triangle is  Δ_(max) =((d×AB)/2)=(((1+(√2))ab(√(a^2 +b^2 )))/(2(√(a^2 +b^2 ))))=(((1+(√2))ab)/2)  Area of ellipse =πab  ⇒(Δ_(max) /(ellipse))=((1+(√2))/(2π))  similarly  ⇒(Δ_(min) /(ellipse))=(((√2)−1)/(2π))

$${let}\:{m}=\frac{{b}}{{a}} \\ $$$${eqn}.\:{of}\:{line}\://\:{to}\:{BA}\:{is} \\ $$$${y}={mx}+{c} \\ $$$${it}\:{must}\:{tangent}\:{the}\:{ellipse}, \\ $$$${a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{c}=\pm\sqrt{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} }=\pm\sqrt{\mathrm{2}}{b} \\ $$$${for}\:{max}.\:{triangle}\:{c}=\sqrt{\mathrm{2}}{b}, \\ $$$${for}\:{min}.\:{triangle}\:{c}=−\sqrt{\mathrm{2}}{b} \\ $$$$ \\ $$$$\bot{distance}\:{from}\:{A}\:{to}\:{tangent}\:{line} \\ $$$${d}=\frac{\mid{ma}+\sqrt{\mathrm{2}}{b}\mid}{\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }}=\frac{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){ab}}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$${area}\:{of}\:{max}.\:{triangle}\:{is} \\ $$$$\Delta_{{max}} =\frac{{d}×{AB}}{\mathrm{2}}=\frac{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){ab}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{\mathrm{2}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}=\frac{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){ab}}{\mathrm{2}} \\ $$$${Area}\:{of}\:{ellipse}\:=\pi{ab} \\ $$$$\Rightarrow\frac{\Delta_{{max}} }{{ellipse}}=\frac{\mathrm{1}+\sqrt{\mathrm{2}}}{\mathrm{2}\pi} \\ $$$${similarly} \\ $$$$\Rightarrow\frac{\Delta_{{min}} }{{ellipse}}=\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{2}\pi} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com