Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 48526 by Pk1167156@gmail.com last updated on 25/Nov/18

The maximum and minimum values  of   a cos 2θ+ b sin 2θ  are

Themaximumandminimumvaluesofacos2θ+bsin2θare

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Nov/18

a=rsinα   b=rcosα  a^2 +b^2 =r^2   so r=(√(a^2 +b^2 ))   S=acos2θ+bsin2θ    =rsinαcos2θ+rcosαsin2θ  =rsin(α+2θ)  max value of sin(α+2θ)=1  min value of sin(α+2θ)=−1  so max value of acos2θ+bsin2θ  is   =r×1  =(√(a^2 +b^2 ))    min value of acos2θ+bsin2θ  =r×−1  =−(√(a^2 +b^2 ))

a=rsinαb=rcosαa2+b2=r2sor=a2+b2S=acos2θ+bsin2θ=rsinαcos2θ+rcosαsin2θ=rsin(α+2θ)maxvalueofsin(α+2θ)=1minvalueofsin(α+2θ)=1somaxvalueofacos2θ+bsin2θis=r×1=a2+b2minvalueofacos2θ+bsin2θ=r×1=a2+b2

Answered by ajfour last updated on 25/Nov/18

 acos 2θ+bsin 2θ               = (√(a^2 +b^2 ))sin (tan^(−1) (a/b)+2θ)  so maximum value = (√(a^2 +b^2 ))  and minimum value = −(√(a^2 +b^2 )) .

acos2θ+bsin2θ=a2+b2sin(tan1ab+2θ)somaximumvalue=a2+b2andminimumvalue=a2+b2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com