All Questions Topic List
UNKNOWN Questions
Previous in All Question Next in All Question
Previous in UNKNOWN Next in UNKNOWN
Question Number 48526 by Pk1167156@gmail.com last updated on 25/Nov/18
Themaximumandminimumvaluesofacos2θ+bsin2θare
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Nov/18
a=rsinαb=rcosαa2+b2=r2sor=a2+b2S=acos2θ+bsin2θ=rsinαcos2θ+rcosαsin2θ=rsin(α+2θ)maxvalueofsin(α+2θ)=1minvalueofsin(α+2θ)=−1somaxvalueofacos2θ+bsin2θis=r×1=a2+b2minvalueofacos2θ+bsin2θ=r×−1=−a2+b2
Answered by ajfour last updated on 25/Nov/18
acos2θ+bsin2θ=a2+b2sin(tan−1ab+2θ)somaximumvalue=a2+b2andminimumvalue=−a2+b2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com