Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 48527 by Pk1167156@gmail.com last updated on 25/Nov/18

If  xy + yz + zx = 1, then  tan^(−1) x + tan^(−1) y + tan^(−1) z =

Ifxy+yz+zx=1,thentan1x+tan1y+tan1z=

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Nov/18

tan^(−1) x+tan^(−1) (((y+z)/(1−yz)))  =tan^(−1) (((x+((y+z)/(1−yz)))/(1−x×((y+z)/(1−yz)))))  =tan^(−1) (((x−xyz+y+z)/(1−yz−xy−xz)))  tan^(−1) (((x+y+z−xyz)/0))  =tan^(−1) (∞)  =tan^(−1) (tan(π/2))  =(π/2)

tan1x+tan1(y+z1yz)=tan1(x+y+z1yz1x×y+z1yz)=tan1(xxyz+y+z1yzxyxz)tan1(x+y+zxyz0)=tan1()=tan1(tanπ2)=π2

Answered by ajfour last updated on 25/Nov/18

tan^(−1) x = θ , tan^(−1) y = φ , tan^(−1) z = ψ  let   δ = θ+φ+ψ        tan δ = tan (θ+φ^(−) +ψ)                    = ((tan (θ+φ)+tan ψ)/(1−tan (θ+φ)tan ψ))               = ((((tan θ+tan φ)/(1−tan θtan φ))+tan ψ)/(1−tan (θ+φ)tan ψ))               = ((Σtan θ−Πtan θ)/(1−Σtan θ tan φ))  but  Σtan θ tan φ = Σxy = 1  ⇒     𝛅 = θ+φ+ψ = ±(π/2) .

tan1x=θ,tan1y=ϕ,tan1z=ψletδ=θ+ϕ+ψtanδ=tan(θ+ϕ+ψ)=tan(θ+ϕ)+tanψ1tan(θ+ϕ)tanψ=tanθ+tanϕ1tanθtanϕ+tanψ1tan(θ+ϕ)tanψ=ΣtanθΠtanθ1ΣtanθtanϕbutΣtanθtanϕ=Σxy=1δ=θ+ϕ+ψ=±π2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com