All Questions Topic List
UNKNOWN Questions
Previous in All Question Next in All Question
Previous in UNKNOWN Next in UNKNOWN
Question Number 48527 by Pk1167156@gmail.com last updated on 25/Nov/18
Ifxy+yz+zx=1,thentan−1x+tan−1y+tan−1z=
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Nov/18
tan−1x+tan−1(y+z1−yz)=tan−1(x+y+z1−yz1−x×y+z1−yz)=tan−1(x−xyz+y+z1−yz−xy−xz)tan−1(x+y+z−xyz0)=tan−1(∞)=tan−1(tanπ2)=π2
Answered by ajfour last updated on 25/Nov/18
tan−1x=θ,tan−1y=ϕ,tan−1z=ψletδ=θ+ϕ+ψtanδ=tan(θ+ϕ―+ψ)=tan(θ+ϕ)+tanψ1−tan(θ+ϕ)tanψ=tanθ+tanϕ1−tanθtanϕ+tanψ1−tan(θ+ϕ)tanψ=Σtanθ−Πtanθ1−ΣtanθtanϕbutΣtanθtanϕ=Σxy=1⇒δ=θ+ϕ+ψ=±π2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com