Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 48540 by behi83417@gmail.com last updated on 25/Nov/18

Answered by ajfour last updated on 25/Nov/18

 x^2 +y^2 +z^2  +2(xy+yz+zx)=0  ⇒ xy+yz+zx = −((ab)/2)  (x+y+z)^3  = x^3 +y^3 +z^3 +3(y+z)x^2                             +3(z+x)y^2 +3(x+y)z^3                              +6xyz  now since  x+y+z = 0,  ⇒ 0 = −2Σx^3 +6xyz  ⇒   xyz = ((a^3 +b^3 )/3)  ⇒  x, y, z are roots of eq.       t^3 −((ab)/2) t−(((a^3 +b^3 ))/3) = 0    Trigonometric solution to the  above cubic gives  x,y,and z.

x2+y2+z2+2(xy+yz+zx)=0xy+yz+zx=ab2(x+y+z)3=x3+y3+z3+3(y+z)x2+3(z+x)y2+3(x+y)z3+6xyznowsincex+y+z=0,0=2Σx3+6xyzxyz=a3+b33x,y,zarerootsofeq.t3ab2t(a3+b3)3=0Trigonometricsolutiontotheabovecubicgivesx,y,andz.

Commented by behi83417@gmail.com last updated on 25/Nov/18

thank you so much sir Ajfour.but  still waiting for another question....

thankyousomuchsirAjfour.butstillwaitingforanotherquestion....

Commented by MJS last updated on 25/Nov/18

I don′t think we get 3 real solutions  because D=(p^3 /(27))+(q^2 /4)=((6a^6 +11a^3 b^3 +6b^6 )/(216))>0 ∀a,b ∈R  ⇒ Cardano′s solution ⇒ only one variable  of x, y, z is real, the others are complex

Idontthinkweget3realsolutionsbecauseD=p327+q24=6a6+11a3b3+6b6216>0a,bRCardanossolutiononlyonevariableofx,y,zisreal,theothersarecomplex

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Nov/18

(x+y+z)^2 =ab+2(xy+yz+zx)  ab+2(xy+yz+zx)=0  x^3 +y^3 +z^3 −3xyz+3xyz=a^3 +b^3   (x+y+z)(x^2 +y^2 +z^2 −xy−yz−zx)+3xyz=a^3 +b^3   xyz=((a^3 +b^3 )/3)  xy+yz+zx=((−ab)/2)

(x+y+z)2=ab+2(xy+yz+zx)ab+2(xy+yz+zx)=0x3+y3+z33xyz+3xyz=a3+b3(x+y+z)(x2+y2+z2xyyzzx)+3xyz=a3+b3xyz=a3+b33xy+yz+zx=ab2

Commented by tanmay.chaudhury50@gmail.com last updated on 25/Nov/18

wait pls

waitpls

Commented by behi83417@gmail.com last updated on 25/Nov/18

thank you very much sir tanmay.waiting.....

thankyouverymuchsirtanmay.waiting.....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com