Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 48559 by behi83417@gmail.com last updated on 25/Nov/18

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Nov/18

z(x^2 −yz)=a^2 z  x(y^2 −xz)=b^2 x  y(z^2 −xy)=c^2 y  add them  a^2 z+b^2 x+c^2 y=0  y(x^2 −yz)=a^2 y  z(y^2 −xz)=b^2 z  x(z^2 −xy)=c^2 x  add them   a^2 y+b^2 z+c^2 x=0  a^2 z+b^2 x+c^2 y=0  c^2 x+a^2 y+b^2 z=0  b^2 x+c^2 y+a^2 z=0  (x/(a^4 −b^2 c^2 ))=(y/(b^4 −a^2 c^2 ))=(z/(c^4 −a^2 b^2 ))=k(say)  (x/p)=(y/q)=(z/r)=k  putting the value of x y and z in  x^2 −yz=a^2   p^2 k^2 −qk×rk=a^2   k^2 (p^2 −qr)=a^2   k^2 =(a^2 /(p^2 −qr))    k=±(a/(√(p^2 −qr)))  x=pk    so x=±((ap)/(√(p^2 −qr)))  y=qk   so y=±((aq)/(√(p^2 −qr)))  z=rk   so z=±((ar)/(√(p^2 −qr)))  now calculating value of p^2 −qr  (a^4 −b^2 c^2 )^2 −(b^4 −a^2 c^2 )(c^4 −a^2 b^2 )  =(a^8 −2a^4 b^2 c^2 +b^4 c^4 )−(b^4 c^4 −a^2 b^6 −a^2 c^6 +a^4 b^2 c^2 )  =a^8 −3a^4 b^2 c^2 +a^2 b^6 +a^2 c^6   =a^2 (a^6 +b^6 +c^6 −3a^2 b^2 c^2 )  so (√(p^2 −qr)) =a(a^6 +b^6 +c^6 −3a^2 b^2 c^2 )^(1/2)   x=±((ap)/((√(p^2 −qr)) ))=±((a(a^4 −b^2 c^2 ))/(a(√(a^6 +b^6 +c^6 −3a^2 b^2 c^2 )) ))  x=±(((a^4 −b^2 c^2 ))/((√(a^6 +b^6 +c^6 −3a^2 b^2 c^2 )) ))  y=±(((b^4 −a^2 c^2 ))/((√(a^6 +b^6 +c^6 −3a^2 b^2 c^2 )) ))  z=±(((c^4 −a^2 b^2 ))/(√(a^6 +b^6 +c^6 −3a^2 b^2 c^2 )))  pls check...

z(x2yz)=a2zx(y2xz)=b2xy(z2xy)=c2yaddthema2z+b2x+c2y=0y(x2yz)=a2yz(y2xz)=b2zx(z2xy)=c2xaddthema2y+b2z+c2x=0a2z+b2x+c2y=0c2x+a2y+b2z=0b2x+c2y+a2z=0xa4b2c2=yb4a2c2=zc4a2b2=k(say)xp=yq=zr=kputtingthevalueofxyandzinx2yz=a2p2k2qk×rk=a2k2(p2qr)=a2k2=a2p2qrk=±ap2qrx=pksox=±app2qry=qksoy=±aqp2qrz=rksoz=±arp2qrnowcalculatingvalueofp2qr(a4b2c2)2(b4a2c2)(c4a2b2)=(a82a4b2c2+b4c4)(b4c4a2b6a2c6+a4b2c2)=a83a4b2c2+a2b6+a2c6=a2(a6+b6+c63a2b2c2)sop2qr=a(a6+b6+c63a2b2c2)12x=±app2qr=±a(a4b2c2)aa6+b6+c63a2b2c2x=±(a4b2c2)a6+b6+c63a2b2c2y=±(b4a2c2)a6+b6+c63a2b2c2z=±(c4a2b2)a6+b6+c63a2b2c2plscheck...

Commented by behi83417@gmail.com last updated on 25/Nov/18

right answer sir.thank you very much.

rightanswersir.thankyouverymuch.

Commented by tanmay.chaudhury50@gmail.com last updated on 25/Nov/18

thank you sir...

thankyousir...

Answered by ajfour last updated on 25/Nov/18

(x−y)(x+y+z) = a^2 −b^2    (y−z)(x+y+z) = b^2 −c^2   (z−x)(x+y+z) = c^2 −a^2     ⇒   ((x−y)/(y−z)) = ((a^2 −b^2 )/(b^2 −c^2 )) = p          ((y−z)/(z−x)) = ((b^2 −c^2 )/(c^2 −a^2 )) = q          ((z−x)/(x−y)) = ((c^2 −a^2 )/(a^2 −b^2 )) = r  Now  let  (x/y) =u  , (z/y) = v  where  u≠1 & v≠ 1  ⇒    u−1= p(1−v)          ...(i)  &      1−v = q(v−u)        ...(ii)  &      v−u = r(u−1)        ...(iii)   rewriting (i) & (ii)           u+pv = p+1      −qu+(q+1)v = 1   ⇒   v = ((q(p+1)+1)/(pq+q+1)) = 1     ⇒   u = 1   ⇒  u, v not defined  ⇒  y = 0   So x^2  = a^2 ,  z^2  = c^2  , & xz = −b^2   similarly if  x= 0, then        y^2  = b^2  , z^2  = c^2  , yz = −a^2   And if  z=0        x^2  = a^2 , y^2  = b^2 , xy = −c^2   .

(xy)(x+y+z)=a2b2(yz)(x+y+z)=b2c2(zx)(x+y+z)=c2a2xyyz=a2b2b2c2=pyzzx=b2c2c2a2=qzxxy=c2a2a2b2=rNowletxy=u,zy=vwhereu1&v1u1=p(1v)...(i)&1v=q(vu)...(ii)&vu=r(u1)...(iii)rewriting(i)&(ii)u+pv=p+1qu+(q+1)v=1v=q(p+1)+1pq+q+1=1u=1u,vnotdefinedy=0Sox2=a2,z2=c2,&xz=b2similarlyifx=0,theny2=b2,z2=c2,yz=a2Andifz=0x2=a2,y2=b2,xy=c2.

Answered by behi83417@gmail.com last updated on 25/Nov/18

let: r=x+y+z  r.(x−y)=a^2 −b^2  (i)  r.(y−z)=b^2 −c^2  (ii)  r.(z−x)=c^2 −a^2  (iii)  1.if:a^2 =b^2 =c^2 ⇒ { (([x=y=z⇒a=b=c=0])),(([r=x+y+z=0⇒x^2 +xy+y^2 =a^2 ]∗)) :}  from(∗)we can take any valve for x  and then obtain other varibles.  2.if: a^2 ,or b^2 ,or c^2 ,or a^2 +b^2 +c^2 ≠0,we have:  r.y=r.x−(a^2 −b^2 )  r.z=r.x+(c^2 −a^2 )  ⇒r^2 =r.(x+y+z)=3r.x+(b^2 +c^2 −2a^2 )  or: 3r.x=r^2 +(2a^2 −b^2 −c^2 ) (X)         3r.y=r^2 +(2b^2 −a^2 −c^2 ) (Y)         3r.z=r^2 +(2c^2 −a^2 −b^2 ) (Z)  also we have:  (x−y)^2 +(y−x)^2 +(z−x)^2 =2(a^2 +b^2 +c^2 )   now from (i,ii,iii)and this↑have:  r^2 =(((a^2 −b^2 )^2 +(b^2 −c^2 )^2 +(c^2 −a^2 )^2 )/(2(a^2 +b^2 +c^2 )))=^(after symplifing)   =((a^6 +b^6 +c^6 −3a^2 b^2 c^2 )/((a^2 +b^2 +c^2 )^2 ))  now from: (X)⇒  x=(1/(3r))[r^2 +(2a^2 −b^2 −c^2 )]=^(after symplifing)   =((a^4 −b^2 c^2 )/(√(a^6 +b^6 +c^6 −3a^2 b^2 c^2 ))).  and finally:  x=((a^4 −b^2 c^2 )/(√(a^6 +b^6 +c^6 −3a^2 b^2 c^2 )))  y=((b^4 −a^2 c^2 )/(√(a^6 +b^6 +c^6 −3a^2 b^2 c^2 )))  z=((c^4 −a^2 b^2 )/(√(a^6 +b^6 +c^6 −3a^2 b^2 c^2 )))   .

let:r=x+y+zr.(xy)=a2b2(i)r.(yz)=b2c2(ii)r.(zx)=c2a2(iii)1.if:a2=b2=c2{[x=y=za=b=c=0][r=x+y+z=0x2+xy+y2=a2]from()wecantakeanyvalveforxandthenobtainothervaribles.2.if:a2,orb2,orc2,ora2+b2+c20,wehave:r.y=r.x(a2b2)r.z=r.x+(c2a2)r2=r.(x+y+z)=3r.x+(b2+c22a2)or:3r.x=r2+(2a2b2c2)(X)3r.y=r2+(2b2a2c2)(Y)3r.z=r2+(2c2a2b2)(Z)alsowehave:(xy)2+(yx)2+(zx)2=2(a2+b2+c2)nowfrom(i,ii,iii)andthishave:r2=(a2b2)2+(b2c2)2+(c2a2)22(a2+b2+c2)=aftersymplifing=a6+b6+c63a2b2c2(a2+b2+c2)2nowfrom:(X)x=13r[r2+(2a2b2c2)]=aftersymplifing=a4b2c2a6+b6+c63a2b2c2.andfinally:x=a4b2c2a6+b6+c63a2b2c2y=b4a2c2a6+b6+c63a2b2c2z=c4a2b2a6+b6+c63a2b2c2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com