Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 48638 by mr W last updated on 26/Nov/18

Commented by mr W last updated on 26/Nov/18

Find the locus of P such that PO  is the bisector of ∠APB.

FindthelocusofPsuchthatPOisthebisectorofAPB.

Commented by ajfour last updated on 28/Nov/18

Commented by ajfour last updated on 28/Nov/18

(a/(sin φ)) = (r/(sin (θ+φ)))   &  (b/(sin φ)) = (r/(sin ((π/2)−θ+φ))) = (r/(cos (θ−φ)))  ⇒  sin θcos φ+cos θsin φ=(r/a)sin φ          sin θsin φ+cos θcos φ+=(r/b)sin φ  ⇒ sin θ = ((rsin φ(((cos φ)/a)−((sin φ)/b)))/(cos^2 φ−sin^2 φ))      cos θ = ((rsin φ(((cos φ)/b)−((sin φ)/a)))/(cos^2 φ−sin^2 φ))  ⇒ 1=((r^2 sin^2 φ[(((cos φ)/a)−((sin φ)/b))^2 +(((cos φ)/b)−((sin φ)/a))^2 ])/((cos^2 φ−sin^2 φ)^2 ))  ⇒ 1=((r^2 sin^2 φ[(1/a^2 )+(1/b^2 )−((4sin φcos φ)/(ab))])/((cos^2 φ−sin^2 φ)^2 ))  ⇒ r^2  = ((cos^2 2φ)/(sin^2 φ((1/a^2 )+(1/b^2 )−((2sin 2φ)/(ab)))))        r^2  = ((cot^2 φ−1)/((1/a^2 )+(1/b^2 )−((2sin 2φ)/(ab))))   ((2rdr)/dφ) = 0 ⇒  −2cot φcosec^2 φ((1/a^2 )+(1/b^2 )−((2sin 2φ)/(ab)))          = ((−4cos 2φ)/(ab))(cot^2 φ−1)  ⇒ ((a^2 +b^2 )/(2ab))−sin 2φ = cos^2 2φtan φ  let    tan φ = t ,  ((a^2 +b^2 )/(2ab)) = c  ⇒  t(((1−t^2 )/(1+t^2 )))^2 +((2t)/(1+t^2 ))−c = 0  ⇒   t(1−t^2 )^2 +2t(1+t^2 )−c(1+t^2 )^2 = 0  .....

asinϕ=rsin(θ+ϕ)&bsinϕ=rsin(π2θ+ϕ)=rcos(θϕ)sinθcosϕ+cosθsinϕ=(r/a)sinϕsinθsinϕ+cosθcosϕ+=(r/b)sinϕsinθ=rsinϕ(cosϕasinϕb)cos2ϕsin2ϕcosθ=rsinϕ(cosϕbsinϕa)cos2ϕsin2ϕ1=r2sin2ϕ[(cosϕasinϕb)2+(cosϕbsinϕa)2](cos2ϕsin2ϕ)21=r2sin2ϕ[1a2+1b24sinϕcosϕab](cos2ϕsin2ϕ)2r2=cos22ϕsin2ϕ(1a2+1b22sin2ϕab)r2=cot2ϕ11a2+1b22sin2ϕab2rdrdϕ=02cotϕcosec2ϕ(1a2+1b22sin2ϕab)=4cos2ϕab(cot2ϕ1)a2+b22absin2ϕ=cos22ϕtanϕlettanϕ=t,a2+b22ab=ct(1t21+t2)2+2t1+t2c=0t(1t2)2+2t(1+t2)c(1+t2)2=0.....

Commented by mr W last updated on 28/Nov/18

thanks sir!  we can also build the eqn. w.r.t. θ:  (r/a)=cos θ+sin θ (((b/a) tan θ−1)/(tan θ−(b/a)))  MJS sir has solved the maximum for  this eqn. in Q48739.

thankssir!wecanalsobuildtheeqn.w.r.t.θ:ra=cosθ+sinθbatanθ1tanθbaMJSsirhassolvedthemaximumforthiseqn.inQ48739.

Answered by ajfour last updated on 26/Nov/18

Let P (x,y)  cos θ =((AP ^(−) .OP ^(−) )/(∣AP ^(−) ∣∣OP ^(−) ∣)) = ((BP ^(−) .OP ^(−) )/(∣BP ^(−) ∣∣OP ^(−) ∣))        ((x(x−a)+y^2 )/((√((x−a)^2 +y^2 ))(√(x^2 +y^2 )))) =((x^2 +y(y−b))/((√(x^2 +(y−b)^2 ))(√(x^2 +y^2 )))) .

LetP(x,y)cosθ=AP.OPAP∣∣OP=BP.OPBP∣∣OPx(xa)+y2(xa)2+y2x2+y2=x2+y(yb)x2+(yb)2x2+y2.

Commented by ajfour last updated on 26/Nov/18

should not be omitted, it might  serve to remind that origin cannot  be a point of locus (for θ is not  deined then).

shouldnotbeomitted,itmightservetoremindthatorigincannotbeapointoflocus(forθisnotdeinedthen).

Commented by mr W last updated on 26/Nov/18

Ok sir!  assume P is only in first quadrant.  let R=OP  is there a max. R?

Oksir!assumePisonlyinfirstquadrant.letR=OPisthereamax.R?

Commented by ajfour last updated on 26/Nov/18

i guess no R_(max) .   ((r−acos θ)/(√(r^2 −2arcos θ+a^2 )))=((r−bsin θ)/(√(r^2 −2brsin θ+b^2 )))   r→∞   seem to be obey the equation.

iguessnoRmax.racosθr22arcosθ+a2=rbsinθr22brsinθ+b2rseemtobeobeytheequation.

Commented by mr W last updated on 26/Nov/18

thank you sir!  ∣OP∣ on both sides can be omitted. so  the eqn. is   ((x^2 +y^2 −ax)/(√((x−a)^2 +y^2 ))) =((x^2 +y^2 −by)/(√(x^2 +(y−b)^2 )))  I′m trying to image how it looks like.

thankyousir!OPonbothsidescanbeomitted.sotheeqn.isx2+y2ax(xa)2+y2=x2+y2byx2+(yb)2Imtryingtoimagehowitlookslike.

Commented by mr W last updated on 27/Nov/18

Commented by mr W last updated on 27/Nov/18

for the case a>b, the locus of poini P  in the first quadrant is the red curve.  we have point P_1  with distance R_1  to  the origin. we have point P_2  =A with  distance R_2  to the origin (R_2 =a).  we can see 0<r≤R_1  and R_2 <r<∞.  that means for R_1 <r<R_2  there is  no solution for θ. R_1  is a kind of local  maximum for r.

forthecasea>b,thelocusofpoiniPinthefirstquadrantistheredcurve.wehavepointP1withdistanceR1totheorigin.wehavepointP2=AwithdistanceR2totheorigin(R2=a).wecansee0<rR1andR2<r<.thatmeansforR1<r<R2thereisnosolutionforθ.R1isakindoflocalmaximumforr.

Commented by mr W last updated on 27/Nov/18

Commented by mr W last updated on 27/Nov/18

this diagram shows the case a=4, b=3.  for r in the shaded area there is no  solution. since r is the length of the  rod, that means we can not find a  solution for some lengthes of rod.

thisdiagramshowsthecasea=4,b=3.forrintheshadedareathereisnosolution.sinceristhelengthoftherod,thatmeanswecannotfindasolutionforsomelengthesofrod.

Commented by ajfour last updated on 27/Nov/18

Quite interesting, sir.

Quiteinteresting,sir.

Commented by mr W last updated on 27/Nov/18

I failed to determine R_1 , the local  maximum of r for case a≠b.

IfailedtodetermineR1,thelocalmaximumofrforcaseab.

Commented by ajfour last updated on 28/Nov/18

i am not in good health sir.

iamnotingoodhealthsir.

Commented by mr W last updated on 28/Nov/18

sorry to hear this sir. I wish you a full  recovery a.s.a.p.!

sorrytohearthissir.Iwishyouafullrecoverya.s.a.p.!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com