All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 48703 by cesar.marval.larez@gmail.com last updated on 27/Nov/18
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Nov/18
3)∫sin3(2x)cos(2x)dxt=sin2xdt=2cos2xdx=12∫t3dt=12×t44+c=(sin2x)48+c4)∫cos5(2x)sin3(2x)dxt=cos2xdt=−2sin2xdx∫t5×(1−t2)×dt−2=−12∫t5−t7dt=−12[t66−t88]+c=−12[(cos2x)66−(cos2x)88]+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com