Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 48715 by Abdo msup. last updated on 27/Nov/18

1) find  f(λ) =∫_0 ^1   (dx/(2+e^(−λx) ))  with λ>0  2)calculate ∫_0 ^1     (x/((2+e^(−λx) )^2 ))dx  3) find the value of ∫_0 ^1     (dx/(2 +e^(−x(√3)) ))dx and ∫_0 ^1   (x/((2+e^(−x(√3)) )^2 ))dx

1)findf(λ)=01dx2+eλxwithλ>0 2)calculate01x(2+eλx)2dx 3)findthevalueof01dx2+ex3dxand01x(2+ex3)2dx

Commented bymaxmathsup by imad last updated on 01/Dec/18

1) we have f(λ)=∫_0 ^1    (dx/(2+e^(−λx) ))  changement  e^(λx ) =t give λx=ln(t) ⇒  x=(1/λ)ln(t) ⇒f(λ)=∫_1 ^e^λ       (1/(λ(2+t^(−1) ))) (dt/t) =(1/λ) ∫_1 ^e^λ     (dt/(2t +1))  =(1/(2λ))[ln(2t+1)]_1 ^e^λ    = (1/(2λ)){ln(2e^λ  +1)−ln(3)}   ⇒  f(λ)=(1/(2λ)){ln(2 e^λ  +1)−ln(3)} .

1)wehavef(λ)=01dx2+eλxchangementeλx=tgiveλx=ln(t) x=1λln(t)f(λ)=1eλ1λ(2+t1)dtt=1λ1eλdt2t+1 =12λ[ln(2t+1)]1eλ=12λ{ln(2eλ+1)ln(3)} f(λ)=12λ{ln(2eλ+1)ln(3)}.

Commented bymaxmathsup by imad last updated on 01/Dec/18

2) we have f^′ (λ)=∫_0 ^1  −((−x e^(−λx) )/((2+e^(−λx) )^2 )) dx =∫_0 ^1   ((x e^(−λx) )/((2+e^(−λx) )^2 ))dx ⇒  ∫_0 ^1    ((x e^(−λx) )/((2+e^(−λx) )^2 ))dx =f^′ (λ) =(1/2){−(1/λ^2 )(ln(2e^λ  +1)−ln(3) +(1/λ) ((2 e^λ )/(2e^(λ )  +1))}  =−(1/(2λ^2 )){( ln(2 e^λ  +1)−ln(3)) −((2λ e^λ )/(2e^λ  +1))}  ∫_0 ^1    ((x e^(−x(√3)) )/((2+e^(−x(√3)) )^2 ))dx = f^′ ((√3)) =−(1/6){ (ln(2 e^(√3) +1)−ln(3)) −((2(√3)e^(√3) )/(2 e^(√3) +1))} .

2)wehavef(λ)=01xeλx(2+eλx)2dx=01xeλx(2+eλx)2dx 01xeλx(2+eλx)2dx=f(λ)=12{1λ2(ln(2eλ+1)ln(3)+1λ2eλ2eλ+1} =12λ2{(ln(2eλ+1)ln(3))2λeλ2eλ+1} 01xex3(2+ex3)2dx=f(3)=16{(ln(2e3+1)ln(3))23e32e3+1}.

Commented bymaxmathsup by imad last updated on 01/Dec/18

2) the Q .is calculate ∫_0 ^1   ((x e^(−λx) )/((2+e^(−λx) )^2 ))dx

2)theQ.iscalculate01xeλx(2+eλx)2dx

Commented bymaxmathsup by imad last updated on 01/Dec/18

) we have ∫_0 ^1   (dx/(2+e^(−x(√3)) )) =f((√3)) =(1/(2(√3))){ln(2 e^(√3) +1)−ln(3)}

)wehave01dx2+ex3=f(3)=123{ln(2e3+1)ln(3)}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com