All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 48719 by Abdo msup. last updated on 27/Nov/18
find∫x−2x2+4x−3dx
Commented by Abdo msup. last updated on 27/Nov/18
I=∫x−2x2+4x+4−7=∫x−2(x+2)2−7dx=x+2=7ch(t)∫7ch(t)−47sh(t)7sh(t)dt=7∫ch(t)−4t+c=7sh(t)−4t+cbutsh(t)=et−e−t2andt=argch(x+27)=ln(x+(x+27)2−1)⇒sh(t)=x+(x+27)2−1−1x+(x+27)−12I=72{(x+(x+27)2−1−(x+(x+27)2−1)−1}−4t+c.
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Nov/18
t2=x2+4x−32tdtdx=2x+4tdt=(x+2)dx∫x+2−4x2+4x−3dx∫tdtt−4∫dx(x+2)2−(7)2t−4ln{(x+2)+(x+2)2−(7)2}+c(x2+4x−3)−4ln{(x+2)+x2+4x−3}+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com