All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 48720 by Abdo msup. last updated on 27/Nov/18
calculate∫0∞x2−2cosx+1x4+x2+1dx
Commented by Abdo msup. last updated on 28/Nov/18
letI=∫0∞x2−2cosx+1x4+x2+1dx⇒2I=∫−∞+∞x2+1x4+x2+1dx−∫−∞+∞2cosxx4+x2+1dx=H−KletfindHletφ(z)=z2+1z4+z2+1polesofφ?z4+z2+1=0⇒t2+t+1=0(t=z2)Δ=−3=(i3)2⇒z1=−1+i32=ei2π3andz2=e−i2π3z2=ei2π3⇒z=+−eiπ3z2=e−i2π3⇒z=+−e−iπ3⇒φ(z)=z2+1(z−eiπ3)(z+eiπ3)(z−e−iπ3)(z+e−iπ3)∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,−e−iπ3)Res(φ,eiπ3)=e2iπ3+12eiπ3(2isin(π3)(2cos(π3))=eiπ3+e−iπ38isin(π3)cos(π3)=2cos(π3)8isin(π3)cos(π3)=14i32=12i3Res(φ,−e−iπ3)=e−2iπ3+1−2cos(π3)(2isin(π3))(−2e−iπ3)=eiπ3+e−iπ38icos(π3)sin(π3)=2cos(π3)8icos(π3)sin(π3)=14isin(π3)=14i32=12i3⇒∫−∞+∞φ(z)dz=2iπ{12i3+12i3}=2π3=H
letfindKK=∫−∞+∞2cosxx4+x2+1dx=Re(∫−∞+∞2eixx4+x2+1dx)letW(z)=2eizz4+z2+1⇒W(z)=2eizz4+z2+1⇒W(z)=2eiz(z−eiπ3)(z+eiπ3)(z−e−iπ3)(z+e−iπ3)∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,−e−iπ3)}Res(φ,eiπ3)=2ei(cosπ3+isin(π3))2eiπ3(2isin(π3))2cos(π3)=ei(12+i32)4isin(π3)cos(π3)e−iπ3=e−32ei(12−π3)4i32.12=e−32i3ei(12−π3)Res(φ,−e−iπ3)=2ei(cosπ3−isin(π3))−2cos(π3)(2isin(π3)(−2e−iπ3)=ei(12−i32)4icos(π3)sin(π3)eiπ3=e32ei(12+π3)4i1232=e32ei(12+π3)i3⇒∫−∞+∞W(z)dz=2iπ1i3{e−32ei(12−π3)+e32ei(12+π3{}=2π3{e−32{cos(12−π3)+isin(12−π3)+e32{cos(12+π3)+isin(12+π3)}}K=Re(∫−∞+∞W(z)dz)=2π3{e−32cos(12−π3)+e32cos(12+π3)}sothevalueofIisdetermined.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com