Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 48720 by Abdo msup. last updated on 27/Nov/18

calculate ∫_0 ^∞     ((x^2  −2cosx+1)/(x^4  +x^2  +1))dx

calculate0x22cosx+1x4+x2+1dx

Commented by Abdo msup. last updated on 28/Nov/18

let I = ∫_0 ^∞   ((x^2 −2cosx +1)/(x^4  +x^2  +1))dx ⇒  2I =∫_(−∞) ^(+∞)  ((x^2  +1)/(x^4  +x^2  +1))dx −∫_(−∞) ^(+∞)   ((2cosx)/(x^4  +x^2  +1))dx=H−K  let find H let ϕ(z)=((z^2  +1)/(z^4  +z^2  +1)) poles of ϕ?  z^4  +z^2  +1=0 ⇒t^2  +t+1=0  (t=z^2 )  Δ=−3=(i(√3))^2  ⇒z_1 =((−1+i(√3))/2) =e^((i2π)/3)   and z_2 =e^(−((i2π)/3))   z^2 =e^((i2π)/3)  ⇒ z =+^−  e^((iπ)/3)   z^2 =e^(−((i2π)/3))  ⇒z =+^−  e^(−((iπ)/3))  ⇒  ϕ(z)=((z^2  +1)/((z−e^((iπ)/3) )(z+e^((iπ)/3) )(z−e^(−((iπ)/3)) )(z+e^(−((iπ)/3)) )))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ{ Res(ϕ,e^((iπ)/3) ) +Res(ϕ,−e^(−((iπ)/3)) )  Res(ϕ,e^((iπ)/3) )=((e^(2((iπ)/3)) +1)/(2e^((iπ)/3) (2isin((π/3))(2cos((π/3)))))  =((e^((iπ)/3)  +e^(−((iπ)/3)) )/(8i sin((π/3))cos((π/3)))) =((2cos((π/3)))/(8isin((π/3))cos((π/3)))) =(1/(4i((√3)/2))) =(1/(2i(√3)))  Res(ϕ,−e^(−((iπ)/3)) ) =((e^(−((2iπ)/3)) +1)/(−2cos((π/3))(2isin((π/3)))(−2e^(−((iπ)/3)) )))  =((e^((iπ)/3)  +e^((−iπ)/3) )/(8i cos((π/3))sin((π/3)))) =((2cos((π/3)))/(8i cos((π/3))sin((π/3))))  =(1/(4isin((π/3)))) = (1/(4i ((√3)/2))) =(1/(2i(√3))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ (1/(2i(√3))) +(1/(2i(√3)))} =((2π)/(√3)) =H

letI=0x22cosx+1x4+x2+1dx2I=+x2+1x4+x2+1dx+2cosxx4+x2+1dx=HKletfindHletφ(z)=z2+1z4+z2+1polesofφ?z4+z2+1=0t2+t+1=0(t=z2)Δ=3=(i3)2z1=1+i32=ei2π3andz2=ei2π3z2=ei2π3z=+eiπ3z2=ei2π3z=+eiπ3φ(z)=z2+1(zeiπ3)(z+eiπ3)(zeiπ3)(z+eiπ3)+φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,eiπ3)Res(φ,eiπ3)=e2iπ3+12eiπ3(2isin(π3)(2cos(π3))=eiπ3+eiπ38isin(π3)cos(π3)=2cos(π3)8isin(π3)cos(π3)=14i32=12i3Res(φ,eiπ3)=e2iπ3+12cos(π3)(2isin(π3))(2eiπ3)=eiπ3+eiπ38icos(π3)sin(π3)=2cos(π3)8icos(π3)sin(π3)=14isin(π3)=14i32=12i3+φ(z)dz=2iπ{12i3+12i3}=2π3=H

Commented by Abdo msup. last updated on 28/Nov/18

let find K  K = ∫_(−∞) ^(+∞)  ((2cosx)/(x^4  +x^2  +1))dx =Re(∫_(−∞) ^(+∞)  ((2 e^(ix) )/(x^(4 )  +x^2  +1))dx)  let W(z) =((2 e^(iz) )/(z^4  +z^2  +1)) ⇒  W(z)=((2 e^(iz) )/(z^4  +z^2  +1)) ⇒W(z) =((2 e^(iz) )/((z−e^((iπ)/3) )(z +e^((iπ)/3) )(z−e^(−((iπ)/3)) )(z+e^(−((iπ)/3)) )))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ { Res(ϕ,e^((iπ)/3) ) +Res(ϕ,−e^(−((iπ)/3)) )}  Res(ϕ,e^((iπ)/3) ) = ((2 e^(i(cos(π/3)+isin((π/3)))) )/(2 e^((iπ)/3) (2i sin((π/3)))2cos((π/3))))  = (e^(i((1/2)+i((√3)/2))) /(4isin((π/3))cos((π/3)))) e^(−((iπ)/3))   =((e^(−((√3)/2))  e^(i((1/2)−(π/3))) )/(4i((√3)/2).(1/2)))  =(e^(−((√3)/2)) /(i(√3))) e^(i((1/2)−(π/3)))   Res(ϕ,−e^(−((iπ)/3)) ) = ((2 e^(i(cos(π/3)−isin((π/3)))) )/(−2cos((π/3))(2isin((π/3))(−2 e^((−iπ)/3) )))  =(e^(i((1/2)−i((√3)/2))) /(4i cos((π/3))sin((π/3)))) e^((iπ)/3)  =((e^((√3)/2)  e^(i((1/2)+(π/3))) )/(4i (1/2) ((√3)/2))) = ((e^((√3)/(2 ))   e^(i((1/2)+(π/3))) )/(i(√3))) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =2iπ(1/(i(√3))){  e^(−((√3)/2))  e^(i((1/2)−(π/3)))  + e^((√3)/2)  e^(i((1/2)+(π/3){) }  =((2π)/(√3)){ e^(−((√3)/2)) {cos((1/2)−(π/3))+isin((1/2)−(π/3))+  e^((√3)/2) { cos((1/2)+(π/3))+i sin((1/2)+(π/3))}}  K =Re(∫_(−∞) ^(+∞) W(z)dz)  =((2π)/(√3)){ e^(−((√3)/2)) cos((1/2)−(π/3)) +e^((√3)/2) cos((1/2) +(π/3))}  so thevalue of I is determined.

letfindKK=+2cosxx4+x2+1dx=Re(+2eixx4+x2+1dx)letW(z)=2eizz4+z2+1W(z)=2eizz4+z2+1W(z)=2eiz(zeiπ3)(z+eiπ3)(zeiπ3)(z+eiπ3)+φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,eiπ3)}Res(φ,eiπ3)=2ei(cosπ3+isin(π3))2eiπ3(2isin(π3))2cos(π3)=ei(12+i32)4isin(π3)cos(π3)eiπ3=e32ei(12π3)4i32.12=e32i3ei(12π3)Res(φ,eiπ3)=2ei(cosπ3isin(π3))2cos(π3)(2isin(π3)(2eiπ3)=ei(12i32)4icos(π3)sin(π3)eiπ3=e32ei(12+π3)4i1232=e32ei(12+π3)i3+W(z)dz=2iπ1i3{e32ei(12π3)+e32ei(12+π3{}=2π3{e32{cos(12π3)+isin(12π3)+e32{cos(12+π3)+isin(12+π3)}}K=Re(+W(z)dz)=2π3{e32cos(12π3)+e32cos(12+π3)}sothevalueofIisdetermined.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com