Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 48725 by Tawa1 last updated on 27/Nov/18

∫ ∫  (√(x^2  + y^2 ))   dx dy,                   (√(3y))   ≤  x  ≤  (√(4 − y^2 ))  ,         0 ≤ y ≤ 2

x2+y2dxdy,3yx4y2,0y2

Commented by Abdo msup. last updated on 27/Nov/18

let I =∫∫_D   (√(x^2  +y^2 ))dxdy   with D={(x,y)∈R^2 /0≤y≤2 and  (√(3y))≤x≤(√(4−y^2 ))  I =∫_0 ^2  (∫_(√(3y)) ^(√(4−y^2 )) (√(x^2  +y^2 ))dx)dy let find A(y)=∫_(√(3y)) ^(√(4−y^2 ))    (√(x^2  +y^2 ))dx  A(y) =_(x=ysh(t))    ∫_(argsh(((√3)/(√y)))) ^(argsh(((√(4−y^2 ))/y))) ych(t)y ch(t)dt  = y^2 ∫_(ln(((√3)/(√y)) +(√(3/y^2 ))+1)) ^(ln(((√(4−y^2 ))/y) +(√((4−y^2 )/y^2 ))+1)) ((1+ch(2t))/2) dt  =(y^2 /2){ln(((√(4−y^2 ))/y)+(2/y))−ln(((√3)/(√y)) +(√(3/y^2 ))+1)}  +(y^2 /4)[sh(2t)]_(α(y)) ^(β(y))  =...+(y^2 /8)[ e^(2t) −e^(−2t) ]_(α(y)) ^(β(y))   =....+(y^2 /8){ (((√(4−y^2 ))/y) +(2/y))^2  −(((√3)/(√y)) +(√((3/y^2 )+1)))^(−2) } ⇒  A(y)=(y^2 /2){ln(((√(4−y^2 ))/y) +(2/y))−ln(((√3)/(√y)) +(√((3/y^2 )+1)))  +(y^2 /8){ln(((√(4−y^2 ))/y) +(2/y))−ln(((√3)/(√y)) +(√((3/y^2 )+1)))^(−2) } ⇒  I =∫_0 ^2 A(y)dy ...be continued...

letI=Dx2+y2dxdywithD={(x,y)R2/0y2and3yx4y2I=02(3y4y2x2+y2dx)dyletfindA(y)=3y4y2x2+y2dxA(y)=x=ysh(t)argsh(3y)argsh(4y2y)ych(t)ych(t)dt=y2ln(3y+3y2+1)ln(4y2y+4y2y2+1)1+ch(2t)2dt=y22{ln(4y2y+2y)ln(3y+3y2+1)}+y24[sh(2t)]α(y)β(y)=...+y28[e2te2t]α(y)β(y)=....+y28{(4y2y+2y)2(3y+3y2+1)2}A(y)=y22{ln(4y2y+2y)ln(3y+3y2+1)+y28{ln(4y2y+2y)ln(3y+3y2+1)2}I=02A(y)dy...becontinued...

Commented by Tawa1 last updated on 29/Nov/18

God bless you sir

Godblessyousir

Commented by maxmathsup by imad last updated on 01/Dec/18

thank you sir .

thankyousir.

Answered by MJS last updated on 28/Nov/18

(1)  ∫(√(x^2 +y^2 ))dx=       [t=arcsinh (x/y) → x=ysinh t ∧ dx=ycosh t dt]  =∫ycosh t (√(y^2 +y^2 sinh^2  t))dt=y^2 ∫cosh^2  t dt=  =(y^2 /2)∫cosh 2t dt+(y^2 /2)∫dt=(y^2 /4)sinh 2t +(y^2 /2)t=       [y≥0]  =(x/2)(√(x^2 +y^2 ))+(y^2 /2)arcsinh (x/y)  ∫_(√(3y)) ^(√(4−y^2 )) (√(x^2 +y^2 ))dx=(√(4−y^2 ))+(y^2 /2)arcsinh ((√(4−y^2 ))/y) −(y/2)(√(3(y+3)))−(y^2 /2)arcsinh (√(3/y))  (2.1)  ∫(√(4−y^2 ))dy=       [u=arcsin (y/2) → y=2sin u ∧ dy=2cos u du]  =∫2cos u (√(4−4sin^2  u))du=4∫cos^2  u du=  =2∫cos 2u du+2∫du=sin 2u +2u=  =(y/2)(√(4−y^2 ))+2arcsin (y/2)  (2.2)  ∫(y^2 /2)arcsinh ((√(4−y^2 ))/y) dy=        [((∫f′g=fg−∫fg′ with: f′=(y^2 /2) → f=(y^3 /6))),((g=arcsinh ((√(4−y^2 ))/y) → g′=−(2/(y(√(4−y^2 )))))) ]  =(y^3 /6)arcsinh ((√(4−y^2 ))/y) +(1/3)∫(y^2 /(√(4−y^2 )))dy=            (1/3)∫(y^2 /(√(4−y^2 )))dy=(1/3)∫((y^2 −4+4)/(√(4−y^2 )))dy=            =−(1/3)∫(√(4−y^2 ))dy+(4/3)∫(dy/(√(4−y^2 )))=            =−(y/6)(√(4−y^2 ))+(2/3)arcsin (y/2)  =(y^3 /6)arcsinh ((√(4−y^2 ))/y) −(y/6)(√(4−y^2 ))+(2/3)arcsin (y/2)  (2.3)  ∫−(y/2)(√(3(y+3)))dy=−((√3)/2)∫y(√(y+3))dy=       [v=y+3 → dy=dv]  =−((√3)/2)∫(v−3)(√v)dv=((3(√3))/2)∫v^(1/2) dv−((√3)/2)∫v^(3/2) dv=  =(√3)v^(3/2) −((√3)/5)v^(5/2) =(√3)(y+3)^(3/2) −((√3)/5)(y+3)^(5/2) =((√3)/5)(2−y)(y+3)^(3/2)   (2.4)  ∫−(y^2 /2)arcsinh (√(3/y))dy=−(1/2)∫y^2 arcsinh (√(3/y))dy=       [w=(y^3 /3) → dx=(dw/y^2 )]  =−(1/2)∫arcsinh ((3)^(1/3) /(w)^(1/6) ) dw=        [((∫f′g=fg−∫fg′ with: f′=1 → f=w)),((g=arcsinh ((3)^(1/3) /(w)^(1/6) ) → g′=−((3)^(1/3) /(6w(√((w)^(1/3) +(9)^(1/3) )))))) ]  =−(w/2)arcsinh ((3)^(1/3) /(w)^(1/6) ) −((3)^(1/3) /(12))∫(dw/(√((w)^(1/3) +(9)^(1/3) )))            −((3)^(1/3) /(12))∫(dw/(√((w)^(1/3) +(9)^(1/3) )))=                 [z=(w)^(1/3) +(9)^(1/3)  → dw=3(z−(9)^(1/3) )dz]            =−((3)^(1/3) /4)∫z^(3/2) dz+(3/2)∫z^(1/2) dz−((3(9)^(1/3) )/4)∫z^(−(1/2)) dz=            =−((3)^(1/3) /(10))z^(5/2) +z^(3/2) −((3(9)^(1/3) )/2)z^(1/2) =(−((3)^(1/3) /(10))(w^2 )^(1/3) +(2/5)(w)^(1/3) −((4(9)^(1/3) )/5))(√((w)^(1/3) +(9)^(1/3) ))  =−(w/2)arcsinh ((3)^(1/3) /(w)^(1/6) ) −(((3)^(1/3) /(10))(w^2 )^(1/3) −(2/5)(w)^(1/3) +((4(9)^(1/3) )/5))(√((w)^(1/3) +(9)^(1/3) ))=  =−(y^3 /6)arcsinh ((9)^(1/3) /y) −(1/(30))(y^2 −4y+24)(√(3(y+3)))  ∫_0 ^2 (∫_(√(3y)) ^(√(4−y^2 )) (√(x^2 +y^2 ))dx)dy=((4π)/3)−(4/3)arcsinh ((9)^(1/3) /2) −((2(√(15)))/3)−(6/5)≈−.805740

(1)x2+y2dx=[t=arcsinhxyx=ysinhtdx=ycoshtdt]=ycoshty2+y2sinh2tdt=y2cosh2tdt==y22cosh2tdt+y22dt=y24sinh2t+y22t=[y0]=x2x2+y2+y22arcsinhxy4y23yx2+y2dx=4y2+y22arcsinh4y2yy23(y+3)y22arcsinh3y(2.1)4y2dy=[u=arcsiny2y=2sinudy=2cosudu]=2cosu44sin2udu=4cos2udu==2cos2udu+2du=sin2u+2u==y24y2+2arcsiny2(2.2)y22arcsinh4y2ydy=[fg=fgfgwith:f=y22f=y36g=arcsinh4y2yg=2y4y2]=y36arcsinh4y2y+13y24y2dy=13y24y2dy=13y24+44y2dy==134y2dy+43dy4y2==y64y2+23arcsiny2=y36arcsinh4y2yy64y2+23arcsiny2(2.3)y23(y+3)dy=32yy+3dy=[v=y+3dy=dv]=32(v3)vdv=332v12dv32v32dv==3v3235v52=3(y+3)3235(y+3)52=35(2y)(y+3)32(2.4)y22arcsinh3ydy=12y2arcsinh3ydy=[w=y33dx=dwy2]=12arcsinh33w6dw=[fg=fgfgwith:f=1f=wg=arcsinh33w6g=336ww3+93]=w2arcsinh33w63312dww3+933312dww3+93=[z=w3+93dw=3(z93)dz]=334z32dz+32z12dz3934z12dz==3310z52+z323932z12=(3310w23+25w34935)w3+93=w2arcsinh33w6(3310w2325w3+4935)w3+93==y36arcsinh93y130(y24y+24)3(y+3)20(4y23yx2+y2dx)dy=4π343arcsinh932215365.805740

Commented by MJS last updated on 28/Nov/18

...please someone check for typos. it′s 3 a.m.  and I′m really tired...

...pleasesomeonecheckfortypos.its3a.m.andImreallytired...

Commented by maxmathsup by imad last updated on 28/Nov/18

thank you sir for this hard work this is the way.

thankyousirforthishardworkthisistheway.

Commented by MJS last updated on 28/Nov/18

you′re welcome

yourewelcome

Commented by Tawa1 last updated on 29/Nov/18

God bless you sir

Godblessyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com