Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 48955 by Abdulhafeez Abu qatada last updated on 30/Nov/18

Evaluate ∫_0 ^((√3)/4)  ((2xsin^(−1) (2x))/(√(1−4x^2 ))) dx

Evaluate3402xsin1(2x)14x2dx

Answered by tanmay.chaudhury50@gmail.com last updated on 30/Nov/18

2x=sinθ   2dx=cosθdθ  ∫_0 ^(π/3) ((sinθ×θ)/(√(1−sin^2 θ)))×((cosθdθ)/2)  (1/2)∫_0 ^(π/3)  θsinθdθ  I=∫θsinθdθ  =θ∫sinθdθ−∫[(dθ/dθ)∫sinθdθ] dθ  =−θcosθ−∫−cosθdθ  =−θcosθ+sinθ+c  so required intregal is  (1/2)∣−θcosθ+sinθ∣_0 ^(π/3)   =(1/2)[(−(π/3)×(1/2)+((√3)/2))]  =((−π)/(12))+((√3)/4)

2x=sinθ2dx=cosθdθ0π3sinθ×θ1sin2θ×cosθdθ2120π3θsinθdθI=θsinθdθ=θsinθdθ[dθdθsinθdθ]dθ=θcosθcosθdθ=θcosθ+sinθ+csorequiredintregalis12θcosθ+sinθ0π3=12[(π3×12+32)]=π12+34

Answered by MJS last updated on 30/Nov/18

u′=((2x)/(√(1−4x^2 ))) ⇒ u=−((√(1−4x^2 ))/4)  v=arcsin 2x ⇒ v′=(2/(√(1−x^2 )))  ∫u′v=uv−∫uv′  ∫((2xarcsin 2x)/(√(1−4x^2 )))=x−((√(1−4x^2 ))/2)arcsin 2x  ∫_0 ^((√3)/4)  ((2xarcsin 2x)/(√(1−4x^2 ))) dx=((3(√3)−π)/(12))

u=2x14x2u=14x24v=arcsin2xv=21x2uv=uvuv2xarcsin2x14x2=x14x22arcsin2x3402xarcsin2x14x2dx=33π12

Answered by Abdulhafeez Abu qatada last updated on 02/Dec/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com