Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 48983 by peter frank last updated on 30/Nov/18

Answered by tanmay.chaudhury50@gmail.com last updated on 01/Dec/18

(x−0)^2 +(y−0)^2 =4^2   x^2 −2x+1+y^2 −4y+4=5  (x−1)^2 +(y−2)^2 =((√5) )^2   solving to find points of intersects  16−2x−4y=0  8−x−2y=0  x=8−2y  (8−2y)^2 +y^2 =16  64−32y+5y^2 −16=0  5y^2 −32y+48=0  5y^2 −20y−12y+48=0  5y(y−4)−12(y−4)=0  (y−4)(5y−12)=0  y=4  and x=0  y=((12)/5)   x=8−((24)/5)=((16)/5)  (0,4) and(((16)/5),((12)/5)) are the points of intersection  of two circles  tangents at (0,4) for circle x^2 +y^2 =16  is x×0+y×4=16  y=4 is a st line parallel to x axis so slope m_1 =0  tangents at(0,4) for circle x^2 +y^2 −2x−4y=0  x×0+y×4−(x+0)−2(y+4)=0  4y−x−2y−4=0  2y=x+4  y=(x/2)+2  so slope m_2 =(1/2)  now angle between two circles at point (0,4)  tanθ_1 =(((1/(2 ))−0)/(1+(1/2)×0))=(1/2) formula tanθ=((m_1 ∼m_2 )/(1+m_1 m_2 ))  so θ_1 =tan^(−1) ((1/(2 )))      tangents at(((16)/5),((12)/5)) for circle x^2 +y^2 =16  x×((16)/5)+y×((12)/5)=16  4(4x+3y)=16×5  4x+3y=20   m_1 =((−4)/3)  tangent at(((16)/5),((12)/5)) for circle x^2 +y^2 −2x−4y=0  x×((16)/5)+y×((12)/5)−(x+((16)/5))−2(y+((12)/5))=0  16x+12y−5x−16−10y−24=0  2y+11x=40  m_2 =((−11)/2)  tanθ_2 =((((−4)/3)+((11)/2))/(1+((−11)/2)×((−4)/3))).=(((−8+33)/6)/((6+44)/6))=((25)/(50))=(1/2)  θ_2 =tan^(−1) ((1/2))

$$\left({x}−\mathrm{0}\right)^{\mathrm{2}} +\left({y}−\mathrm{0}\right)^{\mathrm{2}} =\mathrm{4}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}+{y}^{\mathrm{2}} −\mathrm{4}{y}+\mathrm{4}=\mathrm{5} \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\left({y}−\mathrm{2}\right)^{\mathrm{2}} =\left(\sqrt{\mathrm{5}}\:\right)^{\mathrm{2}} \\ $$$${solving}\:{to}\:{find}\:{points}\:{of}\:{intersects} \\ $$$$\mathrm{16}−\mathrm{2}{x}−\mathrm{4}{y}=\mathrm{0} \\ $$$$\mathrm{8}−{x}−\mathrm{2}{y}=\mathrm{0} \\ $$$${x}=\mathrm{8}−\mathrm{2}{y} \\ $$$$\left(\mathrm{8}−\mathrm{2}{y}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{16} \\ $$$$\mathrm{64}−\mathrm{32}{y}+\mathrm{5}{y}^{\mathrm{2}} −\mathrm{16}=\mathrm{0} \\ $$$$\mathrm{5}{y}^{\mathrm{2}} −\mathrm{32}{y}+\mathrm{48}=\mathrm{0} \\ $$$$\mathrm{5}{y}^{\mathrm{2}} −\mathrm{20}{y}−\mathrm{12}{y}+\mathrm{48}=\mathrm{0} \\ $$$$\mathrm{5}{y}\left({y}−\mathrm{4}\right)−\mathrm{12}\left({y}−\mathrm{4}\right)=\mathrm{0} \\ $$$$\left({y}−\mathrm{4}\right)\left(\mathrm{5}{y}−\mathrm{12}\right)=\mathrm{0} \\ $$$${y}=\mathrm{4}\:\:{and}\:{x}=\mathrm{0} \\ $$$${y}=\frac{\mathrm{12}}{\mathrm{5}}\:\:\:{x}=\mathrm{8}−\frac{\mathrm{24}}{\mathrm{5}}=\frac{\mathrm{16}}{\mathrm{5}} \\ $$$$\left(\mathrm{0},\mathrm{4}\right)\:{and}\left(\frac{\mathrm{16}}{\mathrm{5}},\frac{\mathrm{12}}{\mathrm{5}}\right)\:{are}\:{the}\:{points}\:{of}\:{intersection} \\ $$$${of}\:{two}\:{circles} \\ $$$${tangents}\:{at}\:\left(\mathrm{0},\mathrm{4}\right)\:{for}\:{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{16} \\ $$$${is}\:{x}×\mathrm{0}+{y}×\mathrm{4}=\mathrm{16} \\ $$$${y}=\mathrm{4}\:{is}\:{a}\:{st}\:{line}\:{parallel}\:{to}\:{x}\:{axis}\:{so}\:{slope}\:{m}_{\mathrm{1}} =\mathrm{0} \\ $$$${tangents}\:{at}\left(\mathrm{0},\mathrm{4}\right)\:{for}\:{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{4}{y}=\mathrm{0} \\ $$$${x}×\mathrm{0}+{y}×\mathrm{4}−\left({x}+\mathrm{0}\right)−\mathrm{2}\left({y}+\mathrm{4}\right)=\mathrm{0} \\ $$$$\mathrm{4}{y}−{x}−\mathrm{2}{y}−\mathrm{4}=\mathrm{0} \\ $$$$\mathrm{2}{y}={x}+\mathrm{4} \\ $$$${y}=\frac{{x}}{\mathrm{2}}+\mathrm{2}\:\:{so}\:{slope}\:{m}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${now}\:{angle}\:{between}\:{two}\:{circles}\:{at}\:{point}\:\left(\mathrm{0},\mathrm{4}\right) \\ $$$${tan}\theta_{\mathrm{1}} =\frac{\frac{\mathrm{1}}{\mathrm{2}\:}−\mathrm{0}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{0}}=\frac{\mathrm{1}}{\mathrm{2}}\:{formula}\:{tan}\theta=\frac{{m}_{\mathrm{1}} \sim{m}_{\mathrm{2}} }{\mathrm{1}+{m}_{\mathrm{1}} {m}_{\mathrm{2}} } \\ $$$${so}\:\theta_{\mathrm{1}} ={tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}\:}\right) \\ $$$$ \\ $$$$ \\ $$$${tangents}\:{at}\left(\frac{\mathrm{16}}{\mathrm{5}},\frac{\mathrm{12}}{\mathrm{5}}\right)\:{for}\:{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{16} \\ $$$${x}×\frac{\mathrm{16}}{\mathrm{5}}+{y}×\frac{\mathrm{12}}{\mathrm{5}}=\mathrm{16} \\ $$$$\mathrm{4}\left(\mathrm{4}{x}+\mathrm{3}{y}\right)=\mathrm{16}×\mathrm{5} \\ $$$$\mathrm{4}{x}+\mathrm{3}{y}=\mathrm{20}\:\:\:{m}_{\mathrm{1}} =\frac{−\mathrm{4}}{\mathrm{3}} \\ $$$${tangent}\:{at}\left(\frac{\mathrm{16}}{\mathrm{5}},\frac{\mathrm{12}}{\mathrm{5}}\right)\:{for}\:{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{4}{y}=\mathrm{0} \\ $$$${x}×\frac{\mathrm{16}}{\mathrm{5}}+{y}×\frac{\mathrm{12}}{\mathrm{5}}−\left({x}+\frac{\mathrm{16}}{\mathrm{5}}\right)−\mathrm{2}\left({y}+\frac{\mathrm{12}}{\mathrm{5}}\right)=\mathrm{0} \\ $$$$\mathrm{16}{x}+\mathrm{12}{y}−\mathrm{5}{x}−\mathrm{16}−\mathrm{10}{y}−\mathrm{24}=\mathrm{0} \\ $$$$\mathrm{2}{y}+\mathrm{11}{x}=\mathrm{40} \\ $$$${m}_{\mathrm{2}} =\frac{−\mathrm{11}}{\mathrm{2}} \\ $$$${tan}\theta_{\mathrm{2}} =\frac{\frac{−\mathrm{4}}{\mathrm{3}}+\frac{\mathrm{11}}{\mathrm{2}}}{\mathrm{1}+\frac{−\mathrm{11}}{\mathrm{2}}×\frac{−\mathrm{4}}{\mathrm{3}}}.=\frac{\frac{−\mathrm{8}+\mathrm{33}}{\mathrm{6}}}{\frac{\mathrm{6}+\mathrm{44}}{\mathrm{6}}}=\frac{\mathrm{25}}{\mathrm{50}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\theta_{\mathrm{2}} ={tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com