Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 4900 by prakash jain last updated on 19/Mar/16

∫_n ^( n+1) f(x)dx, n∈N  where f(x)=Π_(i=0) ^(n+1) (x−i)  Can this be integrated with evaluating the  product?

$$\int_{{n}} ^{\:{n}+\mathrm{1}} {f}\left({x}\right)\mathrm{d}{x},\:{n}\in\mathbb{N} \\ $$$${where}\:{f}\left({x}\right)=\underset{{i}=\mathrm{0}} {\overset{{n}+\mathrm{1}} {\prod}}\left({x}−{i}\right) \\ $$$$\mathrm{Can}\:\mathrm{this}\:\mathrm{be}\:\mathrm{integrated}\:\mathrm{with}\:\mathrm{evaluating}\:\mathrm{the} \\ $$$$\mathrm{product}? \\ $$

Commented by Yozzii last updated on 20/Mar/16

It certainly is possible, but with  direct expansion of f(x), evaluating  will be terribly difficult. A Riemann series  representation is possible for  the value of the integral.  f(x)=x(x−1)(x−2)...(x−n)(x−n−1)  ⇒f(1)=0. f(n)=0,f(n+1)=0.  Use right end−points on the curve of  y=f(x) on the interval [n,n+1].  Let the area between the curve and  y=f(x) be regularly partitioned into  strips each of width q=((n+1−n)/N)=(1/N)  where N is the number of strips (N∈N).  The height of each strip is given by  f(n+(j/N))=Π_(i=0) ^(n+1) (n+(j/N)−i) where 1≤j≤N  So ∫_n ^(n+1) f(x)dx=lim_(N→∞) [Σ_(j=1) ^N {f((j/N)+n)×(1/N)}]  ∫_n ^(n+1) f(x)dx=lim_(N→∞) {(1/N)(f((1/N)+n)+f((2/N)+n)+f((3/N)+n)+f((4/N)+n)+...+f(((N−1)/N)+n)+f(1+n))}  ∫_n ^(n+1) f(x)dx=lim_(N→∞) {(1/N)(f((1/N)+n)+f((2/N)+n)+f((3/N)+n)+f((4/N)+n)+...+f(((N−1)/N)+n))}

$${It}\:{certainly}\:{is}\:{possible},\:{but}\:{with} \\ $$$${direct}\:{expansion}\:{of}\:{f}\left({x}\right),\:{evaluating} \\ $$$${will}\:{be}\:{terribly}\:{difficult}.\:{A}\:{Riemann}\:{series} \\ $$$${representation}\:{is}\:{possible}\:{for} \\ $$$${the}\:{value}\:{of}\:{the}\:{integral}. \\ $$$${f}\left({x}\right)={x}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)...\left({x}−{n}\right)\left({x}−{n}−\mathrm{1}\right) \\ $$$$\Rightarrow{f}\left(\mathrm{1}\right)=\mathrm{0}.\:{f}\left({n}\right)=\mathrm{0},{f}\left({n}+\mathrm{1}\right)=\mathrm{0}. \\ $$$${Use}\:{right}\:{end}−{points}\:{on}\:{the}\:{curve}\:{of} \\ $$$${y}={f}\left({x}\right)\:{on}\:{the}\:{interval}\:\left[{n},{n}+\mathrm{1}\right]. \\ $$$${Let}\:{the}\:{area}\:{between}\:{the}\:{curve}\:{and} \\ $$$${y}={f}\left({x}\right)\:{be}\:{regularly}\:{partitioned}\:{into} \\ $$$${strips}\:{each}\:{of}\:{width}\:{q}=\frac{{n}+\mathrm{1}−{n}}{{N}}=\frac{\mathrm{1}}{{N}} \\ $$$${where}\:{N}\:{is}\:{the}\:{number}\:{of}\:{strips}\:\left({N}\in\mathbb{N}\right). \\ $$$${The}\:{height}\:{of}\:{each}\:{strip}\:{is}\:{given}\:{by} \\ $$$${f}\left({n}+\frac{{j}}{{N}}\right)=\underset{{i}=\mathrm{0}} {\overset{{n}+\mathrm{1}} {\prod}}\left({n}+\frac{{j}}{{N}}−{i}\right)\:{where}\:\mathrm{1}\leqslant{j}\leqslant{N} \\ $$$${So}\:\underset{{n}} {\overset{{n}+\mathrm{1}} {\int}}{f}\left({x}\right){dx}=\underset{{N}\rightarrow\infty} {\mathrm{lim}}\left[\underset{{j}=\mathrm{1}} {\overset{{N}} {\sum}}\left\{{f}\left(\frac{{j}}{{N}}+{n}\right)×\frac{\mathrm{1}}{{N}}\right\}\right] \\ $$$$\underset{{n}} {\overset{{n}+\mathrm{1}} {\int}}{f}\left({x}\right){dx}=\underset{{N}\rightarrow\infty} {\mathrm{lim}}\left\{\frac{\mathrm{1}}{{N}}\left({f}\left(\frac{\mathrm{1}}{{N}}+{n}\right)+{f}\left(\frac{\mathrm{2}}{{N}}+{n}\right)+{f}\left(\frac{\mathrm{3}}{{N}}+{n}\right)+{f}\left(\frac{\mathrm{4}}{{N}}+{n}\right)+...+{f}\left(\frac{{N}−\mathrm{1}}{{N}}+{n}\right)+{f}\left(\mathrm{1}+{n}\right)\right)\right\} \\ $$$$\underset{{n}} {\overset{{n}+\mathrm{1}} {\int}}{f}\left({x}\right){dx}=\underset{{N}\rightarrow\infty} {\mathrm{lim}}\left\{\frac{\mathrm{1}}{{N}}\left({f}\left(\frac{\mathrm{1}}{{N}}+{n}\right)+{f}\left(\frac{\mathrm{2}}{{N}}+{n}\right)+{f}\left(\frac{\mathrm{3}}{{N}}+{n}\right)+{f}\left(\frac{\mathrm{4}}{{N}}+{n}\right)+...+{f}\left(\frac{{N}−\mathrm{1}}{{N}}+{n}\right)\right)\right\} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com