Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 49020 by ajfour last updated on 01/Dec/18

Commented by ajfour last updated on 01/Dec/18

If the inscribed ellipse is of maximum  area with its major axis parallel to  side PQ of △PQR with PR = q and  QR =p , find a, b of the ellipse.

IftheinscribedellipseisofmaximumareawithitsmajoraxisparalleltosidePQofPQRwithPR=qandQR=p,finda,boftheellipse.

Commented by ajfour last updated on 01/Dec/18

even if a=b= R  please prove so.

evenifa=b=Rpleaseproveso.

Answered by mr W last updated on 01/Dec/18

Commented by mr W last updated on 02/Dec/18

let m=(q/p), λ=m^2 −1  R(0,d)  where d=((pq)/(√(p^2 +q^2 )))=altitude of triangle  M(h,b)=center of ellipse  eqn. of ellipse:  (((x−h)^2 )/a^2 )+(((y−b)^2 )/b^2 )=1    eqn. of RQ:  y=−mx+d  a^2 m^2 +b^2 =(d−mh−b)^2   ← tangent of ellipsr  a^2 m^2 =(d−mh)^2 −2(d−mh)b  a^2 m^2 +2(d−mh)b=(d−mh)^2    ...(i)    eqn. of RP:  y=(1/m)x+d  (a^2 /m^2 )+b^2 =(d+(h/m)−b)^2  ← tangent of ellipse  (a^2 /m^2 )=(d+(h/m))^2 −2(d+(h/m))b  a^2 =(md+h)^2 −2m(md+h)b  a^2 +2m(md+h)b=(md+h)^2    ...(ii)    case 1: p=q, i.e. m=1, h=0  from (i) or (ii) we get  a^2 +2db=d^2   ⇒b=((d^2 −a^2 )/(2d))  area of ellipse A=πab=((π(d^2 a−a^3 ))/(2d))  (dA/da)=0⇒d^2 −3a^2 =0⇒a=(d/(√3))⇒b=(d/3)    case 2: p≠q, i.e. m≠1  (ii)×m^2 −(i):  2[m^4 d+m^3 h−d+mh]b=(m^2 d+mh+d−mh)(m^2 d+mh−d+mh)  2[(m^2 −1)d+mh]b=[(m^2 −1)d+2mh]d  ⇒b=(([(m^2 −1)d+2mh]d)/(2[(m^2 −1)d+mh]))=(([(m^2 −1)+((2mh)/d)]d)/(2[(m^2 −1)+((mh)/d)]))  ⇒b=(d/2)(((λ+2μ)/(λ+μ))) with μ=((mh)/d)=((h(√(p^2 +q^2 )))/p^2 )    (i)×m(md+h)−(ii)×(d−mh):  a^2 [m^3 (md+h)−(d−mh)]=m(md+h)(d−mh)^2 −(d−mh)(md+h)^2   a^2 [(m^2 −1)d+mh]=(mh−d)(md+h)h  ⇒a^2 =(((mh−d)(md+h)h)/((m^2 −1)d+mh))=(d^2 /m^2 )×(((((mh)/d)−1)(m^2 +((mh)/d))((mh)/d))/([(m^2 −1)+((mh)/d)]))  ⇒a^2 =(d^2 /m^2 )×((μ(μ−1)(m^2 +μ))/(λ+μ))  P=((4m^2 )/d^2 )×a^2 b^2 =((μ(μ−1)(λ+1+μ)(λ+2μ)^2 )/((λ+μ)^3 ))  since area of ellipse is A=πab, max. A  means also max. P.  (dP/dμ)=(((μ−1)(λ+1+μ)(λ+2μ)^2 +μ(λ+1+μ)(λ+2μ)^2 +μ(μ−1)(λ+2μ)^2 +4μ(μ−1)(λ+1+μ)(λ+2μ))/((λ+μ)^3 ))−((3μ(μ−1)(λ+1+μ)(λ+2μ)^2 )/((λ+μ)^4 ))=0  6μ^4 +13λμ^3 +(9λ^2 −2λ−2)μ^2 +(2λ^3 −3λ^2 −3λ)μ−(λ^3 +λ^2 )=2μ^4 +λμ^3 −(λ^2 +2λ+2)μ^2 +(λ^2 +λ)μ  ⇒4μ^4 +12λμ^3 +10λ^2 μ^2 +2λ(λ^2 −2λ−2)μ−λ^2 (λ+1)=0  we solve this eqn. for μ=f(λ)  ⇒a=(d/m)(√((μ(μ−1)(m^2 +μ))/(m^2 +μ−1)))  ⇒b=(d/2)(1+(μ/(m^2 +μ−1)))  ⇒h=((μd)/m)=((μp^2 )/(√(p^2 +q^2 )))

letm=qp,λ=m21R(0,d)whered=pqp2+q2=altitudeoftriangleM(h,b)=centerofellipseeqn.ofellipse:(xh)2a2+(yb)2b2=1eqn.ofRQ:y=mx+da2m2+b2=(dmhb)2tangentofellipsra2m2=(dmh)22(dmh)ba2m2+2(dmh)b=(dmh)2...(i)eqn.ofRP:y=1mx+da2m2+b2=(d+hmb)2tangentofellipsea2m2=(d+hm)22(d+hm)ba2=(md+h)22m(md+h)ba2+2m(md+h)b=(md+h)2...(ii)case1:p=q,i.e.m=1,h=0from(i)or(ii)wegeta2+2db=d2b=d2a22dareaofellipseA=πab=π(d2aa3)2ddAda=0d23a2=0a=d3b=d3case2:pq,i.e.m1(ii)×m2(i):2[m4d+m3hd+mh]b=(m2d+mh+dmh)(m2d+mhd+mh)2[(m21)d+mh]b=[(m21)d+2mh]db=[(m21)d+2mh]d2[(m21)d+mh]=[(m21)+2mhd]d2[(m21)+mhd]b=d2(λ+2μλ+μ)withμ=mhd=hp2+q2p2(i)×m(md+h)(ii)×(dmh):a2[m3(md+h)(dmh)]=m(md+h)(dmh)2(dmh)(md+h)2a2[(m21)d+mh]=(mhd)(md+h)ha2=(mhd)(md+h)h(m21)d+mh=d2m2×(mhd1)(m2+mhd)mhd[(m21)+mhd]a2=d2m2×μ(μ1)(m2+μ)λ+μP=4m2d2×a2b2=μ(μ1)(λ+1+μ)(λ+2μ)2(λ+μ)3sinceareaofellipseisA=πab,max.Ameansalsomax.P.dPdμ=(μ1)(λ+1+μ)(λ+2μ)2+μ(λ+1+μ)(λ+2μ)2+μ(μ1)(λ+2μ)2+4μ(μ1)(λ+1+μ)(λ+2μ)(λ+μ)33μ(μ1)(λ+1+μ)(λ+2μ)2(λ+μ)4=06μ4+13λμ3+(9λ22λ2)μ2+(2λ33λ23λ)μ(λ3+λ2)=2μ4+λμ3(λ2+2λ+2)μ2+(λ2+λ)μ4μ4+12λμ3+10λ2μ2+2λ(λ22λ2)μλ2(λ+1)=0wesolvethiseqn.forμ=f(λ)a=dmμ(μ1)(m2+μ)m2+μ1b=d2(1+μm2+μ1)h=μdm=μp2p2+q2

Commented by ajfour last updated on 02/Dec/18

how can we find  h (the x coordinate  of the center of ellipse inscribed  in terms of a and b , Sir ?

howcanwefindh(thexcoordinateofthecenterofellipseinscribedintermsofaandb,Sir?

Commented by mr W last updated on 02/Dec/18

Commented by mr W last updated on 02/Dec/18

even for the case with p=q, the max.  ellipse is not a circle.  max.A_(ellipse) =((πd^2 )/(3(√3)))=((πp^2 )/(6(√3)))=0.096πp^2   r_(incircle) =(p/(2+(√2)))  A_(incircle) =((πp^2 )/((2+(√2))^2 ))=((πp^2 )/(2(3+2(√2))))=0.085πp^2

evenforthecasewithp=q,themax.ellipseisnotacircle.max.Aellipse=πd233=πp263=0.096πp2rincircle=p2+2Aincircle=πp2(2+2)2=πp22(3+22)=0.085πp2

Commented by mr W last updated on 02/Dec/18

Commented by mr W last updated on 02/Dec/18

Commented by mr W last updated on 02/Dec/18

To MJS Sir:  the eqn.  4μ^4 +12λμ^3 +10λ^2 μ^2 +2λ(λ^2 −2λ−2)μ−λ^2 (λ+1)=0  has two or four solutions. can we get them  accurately, I mean in terms of λ?

ToMJSSir:theeqn.4μ4+12λμ3+10λ2μ2+2λ(λ22λ2)μλ2(λ+1)=0hastwoorfoursolutions.canwegetthemaccurately,Imeanintermsofλ?

Commented by ajfour last updated on 02/Dec/18

Very Great, Sir! you make me  very happy, my mind′s eye rightaway   said, it should be so.(more space  downwards..)  Thank you sir!

VeryGreat,Sir!youmakemeveryhappy,mymindseyerightawaysaid,itshouldbeso.(morespacedownwards..)Thankyousir!

Commented by mr W last updated on 02/Dec/18

To ajfour sir:  μ=((mh)/d)⇒h=((μd)/m)=((μp^2 )/(√(p^2 +q^2 )))

Toajfoursir:μ=mhdh=μdm=μp2p2+q2

Commented by mr W last updated on 02/Dec/18

or  from b=(d/2)(((λ+2μ)/(λ+μ)))  ⇒μ=((λ(2b−d))/(2(d−b)))=(((m^2 −1)(2b−d))/(2(d−b)))  ⇒h=(((2b−d)(q^2 −p^2 ))/(2(d−b)(√(p^2 +q^2 ))))

orfromb=d2(λ+2μλ+μ)μ=λ(2bd)2(db)=(m21)(2bd)2(db)h=(2bd)(q2p2)2(db)p2+q2

Commented by MJS last updated on 02/Dec/18

sorry just read this, I′ll try later

sorryjustreadthis,Illtrylater

Commented by MJS last updated on 02/Dec/18

I′m afraid it′s not possible to solve in terms  of λ...

Imafraiditsnotpossibletosolveintermsofλ...

Commented by mr W last updated on 03/Dec/18

thank you anyway sir!  it′s too complicated indeed.

thankyouanywaysir!itstoocomplicatedindeed.

Answered by ajfour last updated on 03/Dec/18

If  R(0,H)   and p≠q  Then a and b of ellipse are related  by the following expression:  (H−b)(p^2 +q^2 )          = p (√(b^2 p^2 +a^2 q^2 ))+q (√(b^2 q^2 +a^2 p^2 )) .  I however find it difficult to  maximise  a^2 b^2 .  And if   p=q , then    b = (H/3) ,  a = (H/(√3))    where H=((pq)/(√(p^2 +q^2 ))) .

IfR(0,H)andpqThenaandbofellipsearerelatedbythefollowingexpression:(Hb)(p2+q2)=pb2p2+a2q2+qb2q2+a2p2.Ihoweverfinditdifficulttomaximisea2b2.Andifp=q,thenb=H3,a=H3whereH=pqp2+q2.

Commented by mr W last updated on 03/Dec/18

(H−b)(p^2 +q^2 )= p (√(b^2 p^2 +a^2 q^2 ))+q (√(b^2 q^2 +a^2 p^2 ))   (aH−ab)(p^2 +q^2 )= p (√(a^2 b^2 p^2 +a^4 q^2 ))+q (√(a^2 b^2 q^2 +a^4 p^2 ))   (aH−S)(p^2 +q^2 )= p (√(S^2 p^2 +a^4 q^2 ))+q (√(S^2 q^2 +a^4 p^2 ))   with S=ab  (dS/da)=0  H(p^2 +q^2 )= p ((4a^3 q^2 )/(2(√(S^2 p^2 +a^4 q^2 ))))+q((4a^3 p^2 )/(2 (√(S^2 q^2 +a^4 p^2 )) ))  H(p^2 +q^2 )=2pqa^2 [ (q/(√(b^2 p^2 +a^2 q^2 )))+(p/( (√(b^2 q^2 +a^2 p^2 )) ))]  H(p^2 +q^2 )=2pqa^2 [ ((q (√(b^2 q^2 +a^2 p^2 ))+p(√(b^2 p^2 +a^2 q^2 )))/(√((b^2 p^2 +a^2 q^2 )(b^2 q^2 +a^2 p^2 ))))]  H(p^2 +q^2 )=2pqa^2 [ (((H−b)(p^2 +q^2 ))/(√((b^2 p^2 +a^2 q^2 )(b^2 q^2 +a^2 p^2 ))))]  H=2pqa^2 [ (((H−b))/(√((b^2 p^2 +a^2 q^2 )(b^2 q^2 +a^2 p^2 ))))]  let β=(b/a)  ((pq)/(√(p^2 +q^2 )))=2pq[ (((H−b))/(√((β^2 p^2 +q^2 )(β^2 q^2 +p^2 ))))]  (1/(√(p^2 +q^2 )))=2[ (((H−b))/(√((β^2 p^2 +q^2 )(β^2 q^2 +p^2 ))))]  b=H[1−(1/(2H))(√(((β^2 p^2 +q^2 )(β^2 q^2 +p^2 ))/(p^2 +q^2 )))]  (H/b)=(1/([1−(1/(2H))(√(((β^2 p^2 +q^2 )(β^2 q^2 +p^2 ))/(p^2 +q^2 )))]))  =(1/(1−((√((β^2 p^2 +q^2 )(β^2 q^2 +p^2 )))/(2pq))))    ((H/b)−1)(p^2 +q^2 )β= p (√(β^2 p^2 +q^2 ))+q (√(β^2 q^2 +p^2 ))   {(1/(1−((√((β^2 p^2 +q^2 )(β^2 q^2 +p^2 )))/(2pq))))−1}(p^2 +q^2 )β= p (√(β^2 p^2 +q^2 ))+q (√(β^2 q^2 +p^2 ))   with m=(q/p)  ⇒{(1/(1−((√((β^2 +m^2 )(β^2 m^2 +1)))/2)))−1}(1+m^2 )β=  (√(β^2 +m^2 ))+m (√(β^2 m^2 +1))   ⇒β=....

(Hb)(p2+q2)=pb2p2+a2q2+qb2q2+a2p2(aHab)(p2+q2)=pa2b2p2+a4q2+qa2b2q2+a4p2(aHS)(p2+q2)=pS2p2+a4q2+qS2q2+a4p2withS=abdSda=0H(p2+q2)=p4a3q22S2p2+a4q2+q4a3p22S2q2+a4p2H(p2+q2)=2pqa2[qb2p2+a2q2+pb2q2+a2p2]H(p2+q2)=2pqa2[qb2q2+a2p2+pb2p2+a2q2(b2p2+a2q2)(b2q2+a2p2)]H(p2+q2)=2pqa2[(Hb)(p2+q2)(b2p2+a2q2)(b2q2+a2p2)]H=2pqa2[(Hb)(b2p2+a2q2)(b2q2+a2p2)]letβ=bapqp2+q2=2pq[(Hb)(β2p2+q2)(β2q2+p2)]1p2+q2=2[(Hb)(β2p2+q2)(β2q2+p2)]b=H[112H(β2p2+q2)(β2q2+p2)p2+q2]Hb=1[112H(β2p2+q2)(β2q2+p2)p2+q2]=11(β2p2+q2)(β2q2+p2)2pq(Hb1)(p2+q2)β=pβ2p2+q2+qβ2q2+p2{11(β2p2+q2)(β2q2+p2)2pq1}(p2+q2)β=pβ2p2+q2+qβ2q2+p2withm=qp{11(β2+m2)(β2m2+1)21}(1+m2)β=β2+m2+mβ2m2+1β=....

Commented by mr W last updated on 03/Dec/18

sir, I changed your “−” sign to “+” without  to know if it is correct. due to symmetry  I think it should be “+”, because the  result should be unchanged if we   exchange p and q.

sir,Ichangedyoursignto+withouttoknowifitiscorrect.duetosymmetryIthinkitshouldbe+,becausetheresultshouldbeunchangedifweexchangepandq.

Commented by ajfour last updated on 03/Dec/18

yes sir, it should be ′+′ .  thanks for pointing out, and all  the workings thereafter..

yessir,itshouldbe+.thanksforpointingout,andalltheworkingsthereafter..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com