Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 49061 by Pk1167156@gmail.com last updated on 02/Dec/18

The numerical value of    tan (2 tan^(−1) (1/5) − (π/4))  is

Thenumericalvalueoftan(2tan115π4)is

Answered by tanmay.chaudhury50@gmail.com last updated on 02/Dec/18

tan^(−1) ((1/5))+tan^(−1) ((1/5))=tan^(−1) ((((1/5)+(1/5))/(1−(1/5)×(1/5))))=tan^(−1) (((2/5)/(1−(1/(25)))))  =tan^(−1) ((2/5)×((25)/(24)))=tan^(−1) ((5/(12)))  tan(tan^(−1) ((5/(12)))−(π/4))=((tan(tan^(−1) ((5/(12))))−tan((π/4)))/(1+tan(tan^(−1) ((5/(12))))tan((π/4))))  =(((5/(12))−1)/(1+(5/(12 ))×1))=((−7)/(17)) pls check...

tan1(15)+tan1(15)=tan1(15+15115×15)=tan1(251125)=tan1(25×2524)=tan1(512)tan(tan1(512)π4)=tan(tan1(512))tan(π4)1+tan(tan1(512))tan(π4)=51211+512×1=717plscheck...

Answered by hknkrc46 last updated on 02/Dec/18

tan (2tan^(−1) (1/5)−(𝛑/4))=((tan (2tan^(−1) (1/5))−tan (𝛑/4))/(1+tan (2tan^(−1) (1/5))tan (𝛑/4)))  =((tan (tan^(−1) (1/5)+tan^(−1) (1/5))−tan (𝛑/4))/(1+tan (tan^(−1) (1/5)+tan^(−1) (1/5))tan (𝛑/4)))  =((((tan (tan^(−1) (1/5))+tan (tan^(−1) (1/5)))/(1−tan (tan^(−1) (1/5))tan (tan^(−1) (1/5))))−tan (𝛑/4))/(1+((tan (tan^(−1) (1/5))+tan (tan^(−1) (1/5)))/(1−tan (tan^(−1) (1/5))tan (tan^(−1) (1/5))))tan (𝛑/4)))  =(((((1/5)+(1/5))/(1−(1/5)∙(1/5)))−1)/(1+(((1/5)+(1/5))/(1−(1/5)∙(1/5)))))=((((2/5)/((24)/(25)))−1)/(1+((2/5)/((24)/(25)))))=(((5/(12))−1)/(1+(5/(12))))=((−(7/(12)))/((17)/(12)))=−(7/(17))  ★ {tan (tan^(−1) (1/5))=(1/5) ; tan (𝛑/4)=1}

tan(2tan115π4)=tan(2tan115)tanπ41+tan(2tan115)tanπ4=tan(tan115+tan115)tanπ41+tan(tan115+tan115)tanπ4=tan(tan115)+tan(tan115)1tan(tan115)tan(tan115)tanπ41+tan(tan115)+tan(tan115)1tan(tan115)tan(tan115)tanπ4=15+151151511+15+1511515=25242511+252425=51211+512=7121712=717{tan(tan115)=15;tanπ4=1}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com