Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 49144 by AdqhK ÐQeQqQ last updated on 03/Dec/18

∫(1/(x^n +1))dx=??

$$\int\frac{\mathrm{1}}{{x}^{{n}} +\mathrm{1}}{dx}=?? \\ $$

Commented by MJS last updated on 04/Dec/18

x^n +1=Π_(k=0) ^(n−1) (x−e^(i(π/n)(2k+1)) )  ∫(dx/(x^n +1))=Σ_(k=0) ^(n−1) (∫(A_k /(x−e^(i(π/n)(2k+1)) ))dx)=Σ_(k=0) ^(n−1) (A_k ln ∣x−e^(i(π/n)(2k+1)) ∣)+C  A_k =(1/(Π_(l=0; l≠k) ^(n−1) (e^(i(π/n)(2k+1)) −e^(i(π/n)(2l+1)) )))

$${x}^{{n}} +\mathrm{1}=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({x}−\mathrm{e}^{\mathrm{i}\frac{\pi}{{n}}\left(\mathrm{2}{k}+\mathrm{1}\right)} \right) \\ $$$$\int\frac{{dx}}{{x}^{{n}} +\mathrm{1}}=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\left(\int\frac{{A}_{{k}} }{{x}−\mathrm{e}^{\mathrm{i}\frac{\pi}{{n}}\left(\mathrm{2}{k}+\mathrm{1}\right)} }{dx}\right)=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\left({A}_{{k}} \mathrm{ln}\:\mid{x}−\mathrm{e}^{\mathrm{i}\frac{\pi}{{n}}\left(\mathrm{2}{k}+\mathrm{1}\right)} \mid\right)+{C} \\ $$$${A}_{{k}} =\frac{\mathrm{1}}{\underset{{l}=\mathrm{0};\:{l}\neq{k}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\mathrm{e}^{\mathrm{i}\frac{\pi}{{n}}\left(\mathrm{2}{k}+\mathrm{1}\right)} −\mathrm{e}^{\mathrm{i}\frac{\pi}{{n}}\left(\mathrm{2}{l}+\mathrm{1}\right)} \right)} \\ $$

Commented by Abdo msup. last updated on 04/Dec/18

let decompose inside R(x) the fraction F(x)=(1/(x^n  +1))  roots of z^n +1 =0 ⇒z^n =e^(iπ)  ⇒ if z=r e^(iθ)  we get  r =1 and nθ=(2k+1)π ⇒θ =(((2k+1)π)/n)?⇒ the roots are  z_k = e^((i(2k+1)π)/n)   k∈[[0,n−1]] ⇒  F(z) =(1/(Π_(k=0) ^(n−1) (z−z_k ))) =Σ_(k=0) ^(n−1)   (λ_k /(z−z_k ))  λ_k = (1/(n z_k ^(n−1) )) =(z_k /(−n)) =−(z_k /n) ⇒F(z) =−(1/n)Σ_(k=0) ^(n−1)   (z_k /(z−z_k )) ⇒  ∫ F(x)dx =−(1/n) Σ_(k=0) ^(n−1)   z_k  ∫  (dx/(x−z_k )) let determine  ∫   (dx/(x−z_k ))  =A_k   A_k = ∫  (dx/(x−e^(iθ_k ) ))  =∫   (dx/(x−cos(θ_k )−isin(θ_k )))  = ∫    ((x−cos(θ_k )+i sin(θ_k ))/((x−cosθ_k )^2 +sin^2 θ_k ))dx  =∫   ((x−cosθ_k )/(x^2  −2xcosθ_k +1))dx +isinθ_k  ∫   (dx/((x−cosθ_k )^2  +sin^2 θ_k ))  =(1/2)ln(x^2 −2xcosθ_k +1) +isinθ_k   ∫   (dx/((x−cosθ_k )^2  +sin^2 θ_k ))  but ∫   (dx/((x−cosθ)^2  +sin^2 θ_k )) =_(x−cosθ_k =u sinθ_k )   =∫   ((sinθ_k )/(sin^2 θ_k (1+u^2 )))du =(1/(sinθ_k )) arctan(((x−cosθ_k )/(sinθ_k ))) ⇒  A_k =(1/2)ln(x^2  −2xcosθ_k  +1)+i arctan(((x−cosθ_k )/(sinθ_k ))) +C....

$${let}\:{decompose}\:{inside}\:{R}\left({x}\right)\:{the}\:{fraction}\:{F}\left({x}\right)=\frac{\mathrm{1}}{{x}^{{n}} \:+\mathrm{1}} \\ $$$${roots}\:{of}\:{z}^{{n}} +\mathrm{1}\:=\mathrm{0}\:\Rightarrow{z}^{{n}} ={e}^{{i}\pi} \:\Rightarrow\:{if}\:{z}={r}\:{e}^{{i}\theta} \:{we}\:{get} \\ $$$${r}\:=\mathrm{1}\:{and}\:{n}\theta=\left(\mathrm{2}{k}+\mathrm{1}\right)\pi\:\Rightarrow\theta\:=\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{{n}}?\Rightarrow\:{the}\:{roots}\:{are} \\ $$$${z}_{{k}} =\:{e}^{\frac{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{{n}}} \:\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right]\:\Rightarrow \\ $$$${F}\left({z}\right)\:=\frac{\mathrm{1}}{\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({z}−{z}_{{k}} \right)}\:=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\lambda_{{k}} }{{z}−{z}_{{k}} } \\ $$$$\lambda_{{k}} =\:\frac{\mathrm{1}}{{n}\:{z}_{{k}} ^{{n}−\mathrm{1}} }\:=\frac{{z}_{{k}} }{−{n}}\:=−\frac{{z}_{{k}} }{{n}}\:\Rightarrow{F}\left({z}\right)\:=−\frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{{z}_{{k}} }{{z}−{z}_{{k}} }\:\Rightarrow \\ $$$$\int\:{F}\left({x}\right){dx}\:=−\frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{z}_{{k}} \:\int\:\:\frac{{dx}}{{x}−{z}_{{k}} }\:{let}\:{determine} \\ $$$$\int\:\:\:\frac{{dx}}{{x}−{z}_{{k}} }\:\:={A}_{{k}} \\ $$$${A}_{{k}} =\:\int\:\:\frac{{dx}}{{x}−{e}^{{i}\theta_{{k}} } }\:\:=\int\:\:\:\frac{{dx}}{{x}−{cos}\left(\theta_{{k}} \right)−{isin}\left(\theta_{{k}} \right)} \\ $$$$=\:\int\:\:\:\:\frac{{x}−{cos}\left(\theta_{{k}} \right)+{i}\:{sin}\left(\theta_{{k}} \right)}{\left({x}−{cos}\theta_{{k}} \right)^{\mathrm{2}} +{sin}^{\mathrm{2}} \theta_{{k}} }{dx} \\ $$$$=\int\:\:\:\frac{{x}−{cos}\theta_{{k}} }{{x}^{\mathrm{2}} \:−\mathrm{2}{xcos}\theta_{{k}} +\mathrm{1}}{dx}\:+{isin}\theta_{{k}} \:\int\:\:\:\frac{{dx}}{\left({x}−{cos}\theta_{{k}} \right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} \theta_{{k}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}^{\mathrm{2}} −\mathrm{2}{xcos}\theta_{{k}} +\mathrm{1}\right)\:+{isin}\theta_{{k}} \:\:\int\:\:\:\frac{{dx}}{\left({x}−{cos}\theta_{{k}} \right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} \theta_{{k}} } \\ $$$${but}\:\int\:\:\:\frac{{dx}}{\left({x}−{cos}\theta\right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} \theta_{{k}} }\:=_{{x}−{cos}\theta_{{k}} ={u}\:{sin}\theta_{{k}} } \\ $$$$=\int\:\:\:\frac{{sin}\theta_{{k}} }{{sin}^{\mathrm{2}} \theta_{{k}} \left(\mathrm{1}+{u}^{\mathrm{2}} \right)}{du}\:=\frac{\mathrm{1}}{{sin}\theta_{{k}} }\:{arctan}\left(\frac{{x}−{cos}\theta_{{k}} }{{sin}\theta_{{k}} }\right)\:\Rightarrow \\ $$$${A}_{{k}} =\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}^{\mathrm{2}} \:−\mathrm{2}{xcos}\theta_{{k}} \:+\mathrm{1}\right)+{i}\:{arctan}\left(\frac{{x}−{cos}\theta_{{k}} }{{sin}\theta_{{k}} }\right)\:+{C}.... \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com