Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 49177 by rahul 19 last updated on 04/Dec/18

If ∣z_1 −z_2 ∣ = ∣z_1 ∣+∣z_2 ∣ , then prove   that arg((z_1 /z_2 ))=π .

$${If}\:\mid{z}_{\mathrm{1}} −{z}_{\mathrm{2}} \mid\:=\:\mid{z}_{\mathrm{1}} \mid+\mid{z}_{\mathrm{2}} \mid\:,\:{then}\:{prove}\: \\ $$$${that}\:{arg}\left(\frac{{z}_{\mathrm{1}} }{{z}_{\mathrm{2}} }\right)=\pi\:. \\ $$

Answered by MJS last updated on 04/Dec/18

z_1 =pe^(iα) ; z_2 =qe^(iβ)   ∣z_1 −z_2 ∣=(√(p^2 +q^2 −2pq cos (α−β)))  ∣z_1 ∣+∣z_2 ∣=∣p∣+∣q∣  ⇒ −2pqcos (α−β)=2pq  ⇒ cos (α−β)=−1 ⇒ α−β=π  [(z_1 /z_2 )=(p/q)e^(i(α−β)) ]

$${z}_{\mathrm{1}} ={p}\mathrm{e}^{\mathrm{i}\alpha} ;\:\mathrm{z}_{\mathrm{2}} ={q}\mathrm{e}^{\mathrm{i}\beta} \\ $$$$\mid{z}_{\mathrm{1}} −{z}_{\mathrm{2}} \mid=\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} −\mathrm{2}{pq}\:\mathrm{cos}\:\left(\alpha−\beta\right)} \\ $$$$\mid{z}_{\mathrm{1}} \mid+\mid{z}_{\mathrm{2}} \mid=\mid{p}\mid+\mid{q}\mid \\ $$$$\Rightarrow\:−\mathrm{2}{pq}\mathrm{cos}\:\left(\alpha−\beta\right)=\mathrm{2}{pq} \\ $$$$\Rightarrow\:\mathrm{cos}\:\left(\alpha−\beta\right)=−\mathrm{1}\:\Rightarrow\:\alpha−\beta=\pi \\ $$$$\left[\frac{{z}_{\mathrm{1}} }{{z}_{\mathrm{2}} }=\frac{{p}}{{q}}\mathrm{e}^{\mathrm{i}\left(\alpha−\beta\right)} \right] \\ $$

Commented by MJS last updated on 04/Dec/18

...corrected

$$...\mathrm{corrected} \\ $$

Commented by rahul 19 last updated on 04/Dec/18

pls explain 2^(nd)  line .^.^.^(...^(....) )

$${pls}\:{explain}\:\mathrm{2}^{{nd}} \:{line}\:\overset{\overset{\overset{..\overset{....} {.}} {.}} {.}} {.} \\ $$

Commented by MJS last updated on 04/Dec/18

z_1 =p(cos α +isin α)  z_2 =q(cos β +isin β)  z_1 −z_2 =pcos α −qcos β +i(psin α −qsin β)  ∣z_1 −z_2 ∣=(√((pcos α −qcos β)^2 +(psin α −qsin β)^2 ))=  =(√(p^2 +q^2 −2pq(cos α cos β +sin α sin β)))=  =(√(p^2 +q^2 −2pq cos (α−β)))

$${z}_{\mathrm{1}} ={p}\left(\mathrm{cos}\:\alpha\:+\mathrm{isin}\:\alpha\right) \\ $$$${z}_{\mathrm{2}} ={q}\left(\mathrm{cos}\:\beta\:+\mathrm{isin}\:\beta\right) \\ $$$${z}_{\mathrm{1}} −{z}_{\mathrm{2}} ={p}\mathrm{cos}\:\alpha\:−{q}\mathrm{cos}\:\beta\:+\mathrm{i}\left({p}\mathrm{sin}\:\alpha\:−{q}\mathrm{sin}\:\beta\right) \\ $$$$\mid{z}_{\mathrm{1}} −{z}_{\mathrm{2}} \mid=\sqrt{\left({p}\mathrm{cos}\:\alpha\:−{q}\mathrm{cos}\:\beta\right)^{\mathrm{2}} +\left({p}\mathrm{sin}\:\alpha\:−{q}\mathrm{sin}\:\beta\right)^{\mathrm{2}} }= \\ $$$$=\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} −\mathrm{2}{pq}\left(\mathrm{cos}\:\alpha\:\mathrm{cos}\:\beta\:+\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta\right)}= \\ $$$$=\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} −\mathrm{2}{pq}\:\mathrm{cos}\:\left(\alpha−\beta\right)} \\ $$

Commented by rahul 19 last updated on 04/Dec/18

thank you sir! ����

Commented by MJS last updated on 04/Dec/18

you′re welcome

$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com