Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 49183 by ajfour last updated on 04/Dec/18

Commented by ajfour last updated on 04/Dec/18

Find       ((Area △PQR)/(Area △ABC))  , if centroid G  of △ABC lies on z axis and each  vertex on surface of paraboloid.

$${Find}\:\:\:\:\:\:\:\frac{{Area}\:\bigtriangleup{PQR}}{{Area}\:\bigtriangleup{ABC}}\:\:,\:{if}\:{centroid}\:{G} \\ $$$${of}\:\bigtriangleup{ABC}\:{lies}\:{on}\:{z}\:{axis}\:{and}\:{each} \\ $$$${vertex}\:{on}\:{surface}\:{of}\:{paraboloid}. \\ $$

Commented by mr W last updated on 04/Dec/18

does ΔABC have given side lengthes  a,b,c?

$${does}\:\Delta{ABC}\:{have}\:{given}\:{side}\:{lengthes} \\ $$$${a},{b},{c}? \\ $$

Commented by ajfour last updated on 04/Dec/18

yes sir!

$${yes}\:{sir}! \\ $$

Answered by mr W last updated on 05/Dec/18

z=kr^2  with k=1    lengthes of medians of ΔABC:  AG=(2/3)m_a =g_a =((√(2(b^2 +c^2 )−a^2 ))/3)  BG=(2/3)m_b =g_b =((√(2(c^2 +a^2 )−b^2 ))/3)  CG=(2/3)m_c =g_c =((√(2(a^2 +b^2 )−c^2 ))/3)  let z_G =h  let z_A =z_G +AG sin α=h+g_a  sin α  let z_B =z_G +BG sin β=h+g_b  sin β  we have three unknowns: h,α,β.  r_A =AG cos α=g_a  cos α  r_B =BG cos β=g_b  cos β  z_A =kr_A ^2   ⇒h+g_a  sin α=kg_a ^2  cos^2  α  ⇒sin^2  α+(1/(kg_a )) sin α+(h/(kg_a ^2 ))−1=0  ...(i)  similarly  ⇒sin^2  β+(1/(kg_b )) sin β+(h/(kg_b ^2 ))−1=0  ...(ii)  ⇒sin^2  γ+(1/(kg_c )) sin γ+(h/(kg_c ^2 ))−1=0  z_(B′) =z_G −B′G sin β=h−(1/3)m_b  sin β  z_(B′) =(1/2)(z_A +z_C )  z_C =2z_(B′) −z_A =2h−(2/3)m_b  sin β−h−(2/3)m_a  sin α  ⇒z_C =h−(2/3)(m_a  sin α+m_b  sin β)  z_C =h+(2/3)m_c  sin γ  ⇒(2/3)m_c  sin γ=−(2/3)(m_a  sin α+m_b  sin β)  ⇒ sin γ=−(1/g_c )(g_a  sin α+g_b  sin β)  ⇒k(g_a  sin α+g_b  sin β)^2 −(g_a  sin α+g_b  sin β)+h−kg_c ^2 =0   ...(iii)    from (i) and (ii):  k(g_a ^2 sin^2  α−g_b ^2 sin^2  β)+(g_a sin α−g_b sin β)−k(g_a ^2 −g_b ^2 )=0  (1+kg_a sin α+kg_b sin β)(g_a sin α−g_b sin β)=k(g_a ^2 −g_b ^2 )  from (i) and (iii):  k[g_a ^2 sin^2  α−(g_a  sin α+g_b  sin β)^2 ]+[g_a sin α+(g_a  sin α+g_b  sin β)]−k(g_a ^2 −g_c ^2 )=0  (1−kg_b  sin β)(2g_a sin α+g_b  sin β)=k(g_a ^2 −g_c ^2 )  we can solve (nummerically)   { ((((1/k)+g_a sin α+g_b sin β)(g_a sin α−g_b sin β)=g_a ^2 −g_b ^2 )),((((1/k)−g_b  sin β)(2g_a sin α+g_b  sin β)=g_a ^2 −g_c ^2 )) :}  for sin α and sin β.  note: there can be more than one  solution!  with sin α and sin β we get sin γ from  g_a  sin α+g_b  sin β+g_c sin γ=0    let e_a ,e_b ,e_c =projection of AG,BG,CG  e_a =g_a  cos α=g_a (√(1−sin^2  α))  e_b =g_b  cos β=g_b (√(1−sin^2  β))  e_c =g_c  cos γ=g_c (√(1−sin^2  γ))  Δ_(PQR) =((3(√((e_a +e_b +e_c )(−e_a +e_b +e_c )(e_a −e_b +e_c )(e_a +e_b −e_c ))))/4)  Δ_(ABC) =((√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))/4)  (Δ_(PQR) /Δ_(ABC) )=((3(√((e_a +e_b +e_c )(−e_a +e_b +e_c )(e_a −e_b +e_c )(e_a +e_b −e_c ))))/(√((a+b+c)(−a+b+c)(a−b+c)(a+b−c))))

$${z}={kr}^{\mathrm{2}} \:{with}\:{k}=\mathrm{1} \\ $$$$ \\ $$$${lengthes}\:{of}\:{medians}\:{of}\:\Delta{ABC}: \\ $$$${AG}=\frac{\mathrm{2}}{\mathrm{3}}{m}_{{a}} ={g}_{{a}} =\frac{\sqrt{\mathrm{2}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)−{a}^{\mathrm{2}} }}{\mathrm{3}} \\ $$$${BG}=\frac{\mathrm{2}}{\mathrm{3}}{m}_{{b}} ={g}_{{b}} =\frac{\sqrt{\mathrm{2}\left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)−{b}^{\mathrm{2}} }}{\mathrm{3}} \\ $$$${CG}=\frac{\mathrm{2}}{\mathrm{3}}{m}_{{c}} ={g}_{{c}} =\frac{\sqrt{\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−{c}^{\mathrm{2}} }}{\mathrm{3}} \\ $$$${let}\:{z}_{{G}} ={h} \\ $$$${let}\:{z}_{{A}} ={z}_{{G}} +{AG}\:\mathrm{sin}\:\alpha={h}+{g}_{{a}} \:\mathrm{sin}\:\alpha \\ $$$${let}\:{z}_{{B}} ={z}_{{G}} +{BG}\:\mathrm{sin}\:\beta={h}+{g}_{{b}} \:\mathrm{sin}\:\beta \\ $$$${we}\:{have}\:{three}\:{unknowns}:\:{h},\alpha,\beta. \\ $$$${r}_{{A}} ={AG}\:\mathrm{cos}\:\alpha={g}_{{a}} \:\mathrm{cos}\:\alpha \\ $$$${r}_{{B}} ={BG}\:\mathrm{cos}\:\beta={g}_{{b}} \:\mathrm{cos}\:\beta \\ $$$${z}_{{A}} ={kr}_{{A}} ^{\mathrm{2}} \\ $$$$\Rightarrow{h}+{g}_{{a}} \:\mathrm{sin}\:\alpha={kg}_{{a}} ^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\alpha \\ $$$$\Rightarrow\mathrm{sin}^{\mathrm{2}} \:\alpha+\frac{\mathrm{1}}{{kg}_{{a}} }\:\mathrm{sin}\:\alpha+\frac{{h}}{{kg}_{{a}} ^{\mathrm{2}} }−\mathrm{1}=\mathrm{0}\:\:...\left({i}\right) \\ $$$${similarly} \\ $$$$\Rightarrow\mathrm{sin}^{\mathrm{2}} \:\beta+\frac{\mathrm{1}}{{kg}_{{b}} }\:\mathrm{sin}\:\beta+\frac{{h}}{{kg}_{{b}} ^{\mathrm{2}} }−\mathrm{1}=\mathrm{0}\:\:...\left({ii}\right) \\ $$$$\Rightarrow\mathrm{sin}^{\mathrm{2}} \:\gamma+\frac{\mathrm{1}}{{kg}_{{c}} }\:\mathrm{sin}\:\gamma+\frac{{h}}{{kg}_{{c}} ^{\mathrm{2}} }−\mathrm{1}=\mathrm{0} \\ $$$${z}_{{B}'} ={z}_{{G}} −{B}'{G}\:\mathrm{sin}\:\beta={h}−\frac{\mathrm{1}}{\mathrm{3}}{m}_{{b}} \:\mathrm{sin}\:\beta \\ $$$${z}_{{B}'} =\frac{\mathrm{1}}{\mathrm{2}}\left({z}_{{A}} +{z}_{{C}} \right) \\ $$$${z}_{{C}} =\mathrm{2}{z}_{{B}'} −{z}_{{A}} =\mathrm{2}{h}−\frac{\mathrm{2}}{\mathrm{3}}{m}_{{b}} \:\mathrm{sin}\:\beta−{h}−\frac{\mathrm{2}}{\mathrm{3}}{m}_{{a}} \:\mathrm{sin}\:\alpha \\ $$$$\Rightarrow{z}_{{C}} ={h}−\frac{\mathrm{2}}{\mathrm{3}}\left({m}_{{a}} \:\mathrm{sin}\:\alpha+{m}_{{b}} \:\mathrm{sin}\:\beta\right) \\ $$$${z}_{{C}} ={h}+\frac{\mathrm{2}}{\mathrm{3}}{m}_{{c}} \:\mathrm{sin}\:\gamma \\ $$$$\Rightarrow\frac{\mathrm{2}}{\mathrm{3}}{m}_{{c}} \:\mathrm{sin}\:\gamma=−\frac{\mathrm{2}}{\mathrm{3}}\left({m}_{{a}} \:\mathrm{sin}\:\alpha+{m}_{{b}} \:\mathrm{sin}\:\beta\right) \\ $$$$\Rightarrow\:\mathrm{sin}\:\gamma=−\frac{\mathrm{1}}{{g}_{{c}} }\left({g}_{{a}} \:\mathrm{sin}\:\alpha+{g}_{{b}} \:\mathrm{sin}\:\beta\right) \\ $$$$\Rightarrow{k}\left({g}_{{a}} \:\mathrm{sin}\:\alpha+{g}_{{b}} \:\mathrm{sin}\:\beta\right)^{\mathrm{2}} −\left({g}_{{a}} \:\mathrm{sin}\:\alpha+{g}_{{b}} \:\mathrm{sin}\:\beta\right)+{h}−{kg}_{{c}} ^{\mathrm{2}} =\mathrm{0}\:\:\:...\left({iii}\right) \\ $$$$ \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right): \\ $$$${k}\left({g}_{{a}} ^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\alpha−{g}_{{b}} ^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\beta\right)+\left({g}_{{a}} \mathrm{sin}\:\alpha−{g}_{{b}} \mathrm{sin}\:\beta\right)−{k}\left({g}_{{a}} ^{\mathrm{2}} −{g}_{{b}} ^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\left(\mathrm{1}+{kg}_{{a}} \mathrm{sin}\:\alpha+{kg}_{{b}} \mathrm{sin}\:\beta\right)\left({g}_{{a}} \mathrm{sin}\:\alpha−{g}_{{b}} \mathrm{sin}\:\beta\right)={k}\left({g}_{{a}} ^{\mathrm{2}} −{g}_{{b}} ^{\mathrm{2}} \right) \\ $$$${from}\:\left({i}\right)\:{and}\:\left({iii}\right): \\ $$$${k}\left[{g}_{{a}} ^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\alpha−\left({g}_{{a}} \:\mathrm{sin}\:\alpha+{g}_{{b}} \:\mathrm{sin}\:\beta\right)^{\mathrm{2}} \right]+\left[{g}_{{a}} \mathrm{sin}\:\alpha+\left({g}_{{a}} \:\mathrm{sin}\:\alpha+{g}_{{b}} \:\mathrm{sin}\:\beta\right)\right]−{k}\left({g}_{{a}} ^{\mathrm{2}} −{g}_{{c}} ^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\left(\mathrm{1}−{kg}_{{b}} \:\mathrm{sin}\:\beta\right)\left(\mathrm{2}{g}_{{a}} \mathrm{sin}\:\alpha+{g}_{{b}} \:\mathrm{sin}\:\beta\right)={k}\left({g}_{{a}} ^{\mathrm{2}} −{g}_{{c}} ^{\mathrm{2}} \right) \\ $$$${we}\:{can}\:{solve}\:\left({nummerically}\right) \\ $$$$\begin{cases}{\left(\frac{\mathrm{1}}{{k}}+{g}_{{a}} \mathrm{sin}\:\alpha+{g}_{{b}} \mathrm{sin}\:\beta\right)\left({g}_{{a}} \mathrm{sin}\:\alpha−{g}_{{b}} \mathrm{sin}\:\beta\right)={g}_{{a}} ^{\mathrm{2}} −{g}_{{b}} ^{\mathrm{2}} }\\{\left(\frac{\mathrm{1}}{{k}}−{g}_{{b}} \:\mathrm{sin}\:\beta\right)\left(\mathrm{2}{g}_{{a}} \mathrm{sin}\:\alpha+{g}_{{b}} \:\mathrm{sin}\:\beta\right)={g}_{{a}} ^{\mathrm{2}} −{g}_{{c}} ^{\mathrm{2}} }\end{cases} \\ $$$${for}\:\mathrm{sin}\:\alpha\:{and}\:\mathrm{sin}\:\beta. \\ $$$${note}:\:{there}\:{can}\:{be}\:{more}\:{than}\:{one} \\ $$$${solution}! \\ $$$${with}\:\mathrm{sin}\:\alpha\:{and}\:\mathrm{sin}\:\beta\:{we}\:{get}\:\mathrm{sin}\:\gamma\:{from} \\ $$$${g}_{{a}} \:\mathrm{sin}\:\alpha+{g}_{{b}} \:\mathrm{sin}\:\beta+{g}_{{c}} \mathrm{sin}\:\gamma=\mathrm{0} \\ $$$$ \\ $$$${let}\:{e}_{{a}} ,{e}_{{b}} ,{e}_{{c}} ={projection}\:{of}\:{AG},{BG},{CG} \\ $$$${e}_{{a}} ={g}_{{a}} \:\mathrm{cos}\:\alpha={g}_{{a}} \sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\alpha} \\ $$$${e}_{{b}} ={g}_{{b}} \:\mathrm{cos}\:\beta={g}_{{b}} \sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\beta} \\ $$$${e}_{{c}} ={g}_{{c}} \:\mathrm{cos}\:\gamma={g}_{{c}} \sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\gamma} \\ $$$$\Delta_{{PQR}} =\frac{\mathrm{3}\sqrt{\left({e}_{{a}} +{e}_{{b}} +{e}_{{c}} \right)\left(−{e}_{{a}} +{e}_{{b}} +{e}_{{c}} \right)\left({e}_{{a}} −{e}_{{b}} +{e}_{{c}} \right)\left({e}_{{a}} +{e}_{{b}} −{e}_{{c}} \right)}}{\mathrm{4}} \\ $$$$\Delta_{{ABC}} =\frac{\sqrt{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)}}{\mathrm{4}} \\ $$$$\frac{\Delta_{{PQR}} }{\Delta_{{ABC}} }=\frac{\mathrm{3}\sqrt{\left({e}_{{a}} +{e}_{{b}} +{e}_{{c}} \right)\left(−{e}_{{a}} +{e}_{{b}} +{e}_{{c}} \right)\left({e}_{{a}} −{e}_{{b}} +{e}_{{c}} \right)\left({e}_{{a}} +{e}_{{b}} −{e}_{{c}} \right)}}{\sqrt{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)}} \\ $$

Commented by mr W last updated on 04/Dec/18

Commented by ajfour last updated on 06/Dec/18

Thanks sir! and sorry for such  not so interesting question..

$${Thanks}\:{sir}!\:{and}\:{sorry}\:{for}\:{such} \\ $$$${not}\:{so}\:{interesting}\:{question}.. \\ $$

Commented by mr W last updated on 06/Dec/18

but it is an interesting question. what  is the reason for the restriction that  the centroid should lie on z−axix?   with this restriction not every triangle  can be placed inside the cup, for  example a triangle with sides 3,4,5.

$${but}\:{it}\:{is}\:{an}\:{interesting}\:{question}.\:{what} \\ $$$${is}\:{the}\:{reason}\:{for}\:{the}\:{restriction}\:{that} \\ $$$${the}\:{centroid}\:{should}\:{lie}\:{on}\:{z}−{axix}?\: \\ $$$${with}\:{this}\:{restriction}\:{not}\:{every}\:{triangle} \\ $$$${can}\:{be}\:{placed}\:{inside}\:{the}\:{cup},\:{for} \\ $$$${example}\:{a}\:{triangle}\:{with}\:{sides}\:\mathrm{3},\mathrm{4},\mathrm{5}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com